
The vi Editor

The vi editor is a nearly universal text editor included with almost every version of Unix
and/or Linux on the market today.  It stands for "visual" and is pronounced "vee-eye".  It
is important to be able to use vi for simple editing tasks, since it may be the only editor
available in many cases, such as when X-Windows will not run correctly.  Below you will
find a short tutorial designed to show you around vi and help you gain experience in using
this powerful text editor.

The vi editor has two very distinct and separate modes, called text-entry mode and
command mode.  It also has a very powerful search and replace mechanism based on
regular expressions.  At first glance, vi may seem a bit cryptic and hard to use, but once
mastered it can actually outperform many other advanced text editors.  This tutorial will
introduce you to vi's basic commands.  To learn more about vi, consult the online man (or
info) documentation.  There are also a number of books published that will provide more
comprehensive information.

Preliminary Information

Here are some commonly used keys within vi:

Name Action

Esc Exits text-entry mode and returns to command mode, or cancels a
command.

Return Terminates a command, or starts a newline in text-entry mode.
(Sometimes labeled the Enter key).

Interrupt Aborts a command (often labeled Del, Delete, or Rubout).

Bksp Text-entry mode: Backspaces the cursor by one character on the
current line. Removes the previously typed character from the edit
buffer, but does not remove it from the display (sometimes labeled
as a Left Arrow).  The current line is defined as the line containing
the cursor.

Command mode: Backspaces cursor without deletion (can take a
preceding count parameter).

Ctrl-D Command mode: Scrolls down a half-screen.

Ctrl-F Command mode: Scrolls forward a page.

Ctrl-B Command mode: Scrolls backward a page.

Ctrl-N Command mode: Moves cursor down one line (alternative to cursor
arrow key).

Ctrl-P Command mode: Moves cursor up one line (alternative to cursor
arrow key).

Bell or Ctrl-G Command mode: Displays vi status.



Name Action

Ctrl-R or Ctrl-L Command mode: Redraws the screen (key depends on terminal
type).

Ctrl-U Text-entry mode: Restores cursor to the first character inserted on
the current line (further insertions can then be made from that
point).

Command mode: Scrolls up a half-screen.

Ctrl-V Text-entry mode: Used to insert control characters into the text by
suspending the normal action of that control character (some
exceptions).

Ctrl-W Text-entry mode: Moves the cursor to the first character of the last
inserted word.

Ctrl-T Text-entry mode: If autoindent is on, gives an indent of shiftwidth
spaces from left-hand margin.  (Shiftwidth can be preset or varied
by vi commands.)

Ctrl-@ Text-entry mode: When entered as first character of an insertion, vi
replaces Ctrl-@ with the last piece of text inserted (unless this
exceeds 128 characters).  Similar to . (dot) in command mode.

Because keyboards on terminals and computers vary so much, some of the keys shown
may have alternate mappings.  The keyboard mapping is controlled by a file named /
etc/termcap.  The environment variable named TERM is used to select the specific kind
of terminal entry to use from the /etc/termcap file.  Normally, your system login profile
will select the proper terminal when you login.  Should you ever need to modify this, the
following (bash) commands will do so:

TERM=vt102
export TERM

or this (for csh):

setenv TERM vt102

Meet the Family

There are normally three different flavors of the vi editor installed on most Unix systems,
called: view, vedit and vi itself.  The view command invokes the vi editor in read-only
mode, so you cannot modify the file.  If available, the vedit command invokes the vi editor
in novice mode, with extra prompts, more help and some simpler commands.

Invoking vi

vi [-option...] [command...] [filename...]
vedit [-option...] [command...] [filename...]
view [-option...] [command...] [filename...]



Using the command:

view myfile.txt

is equivalent to the command:

vi -R myfile.txt

since the -R option makes vi operate in read-only mode.  I'll cover the various vi options
and commands a bit later.

The vi modes

The vi editor is a modal editor, which means that depending on the current mode of
operation, different keystrokes and commands will have different behaviors.  It has a total
of three different modes, called text-entry, command, and ex escape modes.  In addition,
while in the text-entry mode, there are for sub-modes, called: insert, append, change, and
open sub-modes.

Mode Description

Text-entry Typed characters go to a temporary file known as the editing buffer (and
eventually to a permanent file if the buffer is saved).

Visual clues: printable characters that you type will appear on the screen.
If showmode is on, the appropriate legend INSERT, APPEND, CHANGE,
or OPEN will be displayed at the bottom right of the screen.

Audible clues: pressing Esc will exit text-entry mode (returning you to
command mode) without beeping.

Command Keystrokes are interpreted as vi editing commands.  Each command is
usually a single or double keystroke (with possible modifiers), performing
such operations as cursor movement, screen scrolling, text deletion, change
and movement, string searching, and switching to other modes.

Visual clues: the typed commands do not immediately show on screen.  If
showmode is on, the absence of the mode in the legend is significant!

Audible clues: typing a character that does not correspond to a command
will sound a beep.  Pressing Esc will always beep (and your remain in
command mode).

ex Escape Your input is interpreted as an ex command.  (ex is an older line-oriented
editor upon which vi is based.)

Visual clues: the ex command prompt : (colon) will be displayed at the
beginning of the status line.  The cursor appears after the colon.  ex
commands are displayed as you type them, but have no effect until you
press Return (runs command) or Esc (cancels command).



Mode Navigation

From Mode To Mode Command, Key or Action

Command Text-Entry I, i (insert)

A, a (append)

O, o (open new line)

S, s (substitute)

C, c (change)

R, r (replace)

Text-entry Command Esc

Command ex : (colon)

ex Command Return or Esc after ex command

Text-entry ex Must go to command mode first (Esc), then : (colon)

ex Text-entry Must go to command mode first (Return or Esc),
followed by a text-entry command (i, a, o, s, c or r).

Creating Text with vi

Let's get started, but first make a new directory where we can create some files without
possibly overwriting or corrupting any existing files.  Issue these commands to make a
new directory and then edit the file named test.data in the new directory:

[...]$ cd
[...]$ pwd
/home/randy
[...]$ mkdir junk
[...]$ cd junk
[...]$ vi test.data

Your screen should now look like this:

~
~
~
~
~
~
~
~
~
~
~
~



~
~
~
~
~
~
~
~
~
~
~
test.data [NEW FILE]

The first line will hold your cursor, with lines 2 to 24 showing a tilde (~) character.  If the
file was not empty, the contents of the file would have been displayed.  The tilde (~)
characters indicate empty lines beyond the end of the file.  Line 25 (assuming you have a
25-line display) is reserved for use as a status line.  It is used to display status information
and for entering ex commands.

If the status line gets hidden, you can redisplay it by pressing Ctrl-G.  We call this the
status command.  If the screen every gets garbled, perhaps by noise being received across
a modem link, you can refresh the display by pressing Ctrl-L (sometimes Ctrl-R).  This
command is called the screen refresh or screen redraw command.

The cursor is currently display in column 1 of row 1.  The cursor position indicates where
the next text entry will occur, or which line a command will operate on.

Text entry

The editor started out in command mode.  Before we can enter, change or rearrange any
text, we must switch from command mode to text-entry mode.  Adding new text is done
using either append (the a command) or insert (the i command) mode.  The two modes
only differ in whether we will insert text just before the cursor, or append text after the
cursor.  In some cases, such as when working with a new file, the difference is
unimportant.  At other times, it is vital to use the correct mode.  For example, to extend a
line of text, you must append new characters after the last character on the line.

Let enter some text to get started:

1. First, let's make sure that showmode is enabled.  This will add some additional status
information to the status line.

2. Press the : (colon) key to enter ex mode.  Next, type in set showmode and press the
Return key.  This activates showmode for the duration of the session.  (Hint: To disable
showmode, enter :set noshowmode from command mode).

3. Type a (lowercase) to enter append mode.  The "a" will not appear on screen.
4. You are now in text-entry mode, specifically the append mode.  If you have showmode

turned on, the status line should change to reflect this.
5. Type in the following text (remember to press Return at the end of each line):



At last, I am using vi, the visual editor.  I am in append
mode, so my keystrokes are being stored (appended) into the
editing buffer.  Later on, after further editing, I will save
this text by writing from the buffer to the file test.data.

You should press Enter one last time after the final line of text.  In addition, you should
put two spaces after the period, before starting a new line of text.  Some of the commands
in vi can search for and work with sentences and the editor expects all sentences to be
formatted this way.

Notice how the tildes have disappeared from lines 2 to 6, but on the other unused lines, 7
to 24, there are still tildes in column 1.  If you made any typing errors, ignore them for the
moment.  We see how to make correction a bit later.

The above text is stored in the editing buffer.  Until you write it to disk, the file test.data
remains empty.  During long editing sessions, it is good practice to save the buffer at
regular intervals.  To do this, follow these commands:

1. Press Esc to leave append mode and return to command mode.
2. Type a colon.  You are now in ex mode.  The status line will echo this colon.  It serves

as the ex mode prompt.
3. Type w (the ex write command) followed by Return.  This writes the editing buffer to

disk.  Since you did not provide a file name, the current file name (test.data) is used.
You will then return to command mode.

You can save the buffer in any directory to any file name for which you have write
permissions.  For example, if the file test.temp does not exist, :w test.temp will create the
file and save the buffer to it.  If test.temp already exists, the :w command will not
overwrite it, but you can force vi to overwrite it using the command :w! test.temp.  The
current filename (test.data) will not be changed, so in the future using the :w command
will save the buffer to test.data again.  One useful variant on the :w command is :
w>>filename, which appends the editing buffer to the filename.  In addition, there are
three useful shortcuts that can be used to save, then exit vi immediately:

:wq{Return} Same as :w{Return} followed by :q{Return}

:x Same effect as above

ZZ Same effect as above, but notice you do not enter the : (colon).

After entering the command above, the status line will show wrote test.data, 5 lines, 242
chars, or something very similar.  You will then again be placed in command mode.
Notice that even with the showmode option turned on, the status line does not tell you
that you are in command mode.  There is an easy way to verify command mode however.
Just press the Esc key.  If you are in command mode, you will hear a beep and remain in
command mode.  If you were in text-entry mode, pressing Esc returns you to command
mode, without the beep.

Next, let's exit vi by entering the command :q.  Since we have already saved the editing



buffer to the file, we should exit immediately.  If we had not saved the buffer yet, vi would
complain and refuse to exit.  We can force vi to exit without saving using the :q!
command, or if we wanted to save the file, then exit, we can use :wq, :x, or the ZZ
commands.

To edit the file again, enter the command: vi test.data

Cursor Movement

Command Action

l or spacebar or
{right arrow}

Moves cursor to the right, but not beyond the end of a line (note
the warning beep).  The spacebar does not blank out any
characters being traversed.

h or Bksp or {left
arrow}

Moves the cursor to the left, but not beyond the start of the
current line (a beep sounds).

+ or Return Moves the cursor to the start of the next line, or beeps if already
at the last line in the file.

j or Ctrl-N or Ctrl-J
or LF or {down
arrow}

Moves cursor down one line, in the same column.  Beeps if no
next line.  If column in the lower line is beyond the end of the line,
the cursor moves to the last character in the line.  (Some terminals
do not have a separate LF key).

k or Ctrl-P or {up
arrow}

Moves cursor up one line in the same column.  Beeps if you are
on the first line in the file.  If column in the upper line is beyond
the end of the line, the cursor will move to the last character of
that line.

- {dash} Moves cursor up one line and over to the first character on the
line.  Beeps if no previous line.

^ {caret} Moves cursor to the first nonblank character in the current line.

0 {zero} Moves cursor to column 1 of the current line (whether blank or
not).

$ Moves cursor to the last character of the current line.

w Moves cursor forward to the start of the next word.  Words are
taken to be strings separated by whitespace (newlines, spaces or
tabs), or punctuation symbols, so "heavy,metal,rock" will be
treated as three words by vi.  If at the last word in a line, advances
to the next word on the next line, if available.

W Same as 'w', but punctuation does not count, so
"heavy,metal,rock" would be skipped as a single word.

b Works like 'w', but moves cursor backwards to the previous word.

B Works like 'b', except ignores punctuation symbols.



Command Action

e Works like 'w', but cursor stops under the last character of the
next word.  If the cursor is already in the middle of a word, stops
at the end of the word.

E Works like 'e', but ignores punctuation symbols.

( Moves cursor to the start of the current sentence, or the start of
the previous sentence if the cursor is already at the start of a
sentence.

) Moves cursor to the end of the next sentence.  A sentence is any
string terminated by a period, question mark, or exclamation
point, followed by two spaces or a newline.

H Moves cursor to the home position, which is column 1 of the top
line on the screen.

L Moves cursor to the last line on the screen.

G Moves cursor to the end of the file.

:line_number Immediately jumps to the line number supplied.  (Hint: :1 always
returns you to the top of the file.)

Practice moving the cursor around using these keys on your sample file.

We need to add more text to the sample file in order to gain experience using the screen
control commands for scrolling forward and backward.  We are going to use one of vi's
tricks to quickly add some text to our file.

Edit your sample file (test.data) and position the cursor at under the last period of the last
sentence (Hint: use commands 'G' '$').  Now, enter append mode with the command 'a'.
Enter the following text (press {Return} first):

This line is being added to test.data.

Next, press Esc to leave text-entry mode and enter command mode, followed by a press of
the . (period) key.  This invokes the repeat command, which will repeat the last action we
performed.  Next, try out the undo command, which is invoked by pressing the 'u' key.
Notice our new line of text disappears.  Press 'u' again to invoke undo one more time.
You should see the line of text reappear.  So the undo command reverses the last
command we issued, including possibly undoing an undo command.

Using the repeat command, we can now add as many copies of the line of text as desired.
Press . {period} repeatedly, or hold it down, until the screen begins to scroll.  Now we
can try out some of the screen control commands.

Screen Control Commands



Command Action

[n]Ctrl-U Scrolls the screen up n lines.  The default value for n gives a half-
screen scroll.

[n]Ctrl-D Scrolls the screen down n lines.  The default value for n gives a half-
screen scroll.

[count]Ctrl-F Pages the screen forward, leaving two lines between pages for
continuity, if possible.  Note that count gives the number of pages,
with a default of 1.

[count]Ctrl-B Pages the screen backward, leaving two lines between pages for
continuity, if possible.  Count gives the number of pages to scroll,
with a default of 1.

Ctrl-G or {Bell} Displays the status line.

z{Return} "Zeroes" the screen by redrawing the display with the current line
placed at the top of the screen.  This command is an apparent
exception to the "No Returns Needed" rule.  Actually the 'z' can be
followed by {Return}, . {period}, or - {dash} with different results
(see below).

z. Similar to z{Return}, except places the current line in the middle of
the screen.

z- Similar to z{Return}, except places the current line at the bottom of
the screen.

Ctrl-R or Ctrl-L Refreshes the screen, clearing any garbage characters that may have
showed up in the screen, perhaps from a network broadcast, modem
signal noise, etc...  Usually also clears the status line.

Text-Entry Modes

Command Action

a[text] Appends text after the cursor.

A[text] Appends text after the end of the current line, no matter where the cursor
is.

i[text] Inserts text before the cursor.

I[text] Inserts text in front of the current line no matter where the cursor is.

o[text] Opens a new line below the current line and inserts text.

O[text] Opens a new line above the current line and inserts text.

There is one other command to remember that is the opposite of the open command.  It is
the join command, invoked by pressing the letter J (uppercase).  This brings the line below
the current line up and appends it to the current line.  Unlike the other commands, this



command does not enter text-entry mode, but leaves you in command mode.

Deleting Text

Command Action

x Deletes the character under the cursor.

[count]x Deletes count characters forward starting at
the cursor.

X Deletes the character to the left of the
cursor.

[count]X Deletes count characters backward starting
at the one to the left of the cursor.

dd Deletes the current line.

D Deletes from the cursor to the end of the
line.

d<cursor_movement> Deletes from the cursor or from the current
line to a point determined by the
cursor_movement argument.

Understanding the delete with cursor_movement command is best done with some simple
examples.  As you are trying these commands out, remember the undo command 'u'.  If
you mess things up really bad, you can also use the master_undo command, which undoes
all the changes made to the edit buffer since the file was loaded.  The command for the
master_undo is 'U'.

Cursor Movement Deletes

Command Deletion

dw From the cursor to the end of the word (w is word advance).

db From the cursor to the beginning of the word (b is word back).

d{Return} Deletes the current line and the next line.

d0 Deletes from the cursor the beginning of the line.

d^ Deletes from the cursor to the first printable character in the line.

d$ Deletes from the cursor to the end of the line.

d) Deletes from the cursor to the end of the sentence.

d( Deletes from the cursor to the beginning of the sentence.

dL Deletes from the cursor to the end of the screen.

dH Deletes from the cursor to the beginning of the screen.



Command Deletion

dG Deletes from the cursor to the end of the file.
In addition, most of these commands also accept a count parameter between the 'd' and the
cursor_movement key, so d3w will delete the next 3 words and d4j, or d4{down arrow},
will delete the next four lines of text.

Changing Text

The vi editor supports a change text command, invoked with the 'c' key, that works
similar to the delete text command just discussed.  When changing text, vi will replace the
last character that will be changed with a '$' as a visual aid.  For example, if you place the
cursor on the word 'visual' in the sample text, then press 'cw', the 'l' in visual will be
replaced with a '$' to show you that any text you enter will replace the entire word.  Like
the delete command, the change command accepts both an optional count and a
cursor_movement key, so a general description of the command looks like this:

c[count]<cursor_movement>[text]{Esc}

Other Change Text Commands

Command Action

[count]r<char> Overstrikes the character at the cursor with count
copies of another character, namely char, while
remaining in command mode.  The default for count is
1.

[count]R<text>{Esc} Overstrikes the current line with count copies of text
(default is 1).

cc<text>{Esc} or C<text>{Esc} Changes the current line and replaces it with text.

s<text>{Esc} Substitutes current character with text.

[count]s<text>{Esc} Substitutes count characters with text.

S<text>{Esc} Substitutes the current line with text.

[count]S<text>{Esc} Substitutes count lines with text.

><cursor_movement> Shifts all lines determined by the cursor_movement key
to the right by shiftwidth spaces (defaults to 8).

<<cursor_movement> Shifts all lines determined by the cursor_movement key
to the left by shiftwidth spaces (defaults to 8).

>> Shifts the current line to the right.

<< Shifts the current line to the left.

NOTE: As a general rule of thumb, doubled commands affect only the current line.
Examples include dd (delete current line), cc (change current line), << (shift current line
left) and >> (shift current line right).



Yanking and Putting Text

The vi editor has several other buffers, in addition to the editing buffer, that help you
perform "cut and paste" operations.  There are 26 named buffers, called a, b, c ... z and
nine delete buffers called 1-9.  In addition, there is one unnamed buffer that serves two
purposes: it acts as the default buffer for many operations, and it serves as the receptacle
for the most recently deleted piece of text.  It is often referred to as delete buffer 0.

You can "yank" text from the editing buffer into one of the 26 named buffers, or into the
unnamed buffer, as follows:

["<letter>]y<cursor_movement>

If you specific a letter, text will be yanked from the editing buffer and stored in the buffer
under that name.  Using a lowercase letter gives you a destructive yank (sometimes called
a General Sherman), which overwrites any text that was previously held in the named
buffer.  Using an uppercase letter for the named buffer makes vi do an appending yank
(sometimes called a Lincoln), which appends the yanked text to the named buffer instead
of overwriting the buffer.

By default, the unnamed buffer is used.  The amount of text saved is determined by the
cursor_movement key used.  For example, "ayw will yank the current word into buffer a,
overwriting anything that was in buffer a.  The command "Ay( will yank the text from the
cursor to the beginning of the line, appending the text to buffer a.

The following variants should not surprise you:

["<letter>]yy

or

["<letter>Y

which both will yank the current line and place it into one of the buffers.

Every time you delete any text, vi automatically places the deleted text into both the
unnamed buffer and onto a stack of delete buffers named 1-9.  The nine most recent
deletions are therefore always available for you to paste back into your file, using the
numbers 1-9, instead of a-z.

To transplant the yanked or deleted text back into your document, use the put command.

Syntax:

["<letter|number>]p



or

["<letter|number>]P

  The lowercase version puts the text below the current line, or after the cursor, while the
uppercase version inserts the text above the current line, or before the cursor.

It is very common to use one of the delete commands, move the cursor, then use p or P to
paste the deleted text back into another area of the same file.  Since vi will allow you to
work on more than one file at a time, it is also possible to cut and paste between files.

Searching Text

There are four basic ways in vi to search for text.  The syntax looks like this:

/[pattern]/[offset]{Return}
/[pattern]{Return}

or

?[pattern]?[offset]{Return}
?[pattern]{Return}

Using the / character performs a forward search, while the ? character performs a
backward search.  The pattern accepts simple characters, or more complicated search
patterns called regular expressions.  If no pattern is given, vi will use the last pattern and
repeat the search (or beeps if no previous pattern).  The offset value is a positive or
negative number that modifies your search as follows:

/sun/+2{Return}

will stop two lines after the line having the first occurrence of the word "sun", starting the
search with the current line.

?sun?-4{Return}

will stop four lines prior to the line having the first match for "sun" during a backward
search from the current cursor position.

You can use the :set ignorecase (or :set ic) ex command to make vi perform a case-
insensitive search.  By default, vi performs case sensitive searches.  To reverse this, use
the ex command :set noic.

You can search for a single character in the current line using the command:

f<character>

while



F<character>

searches backwards in the current line for the character specified.

One last command that is quite useful, is the mark command.  This command allows you
to set a bookmark that remembers your current position in the file, which you can later
return to very easily.  It is used often to remember where we are, search for some text,
then jump back to where we started.

To set a bookmark, use this command:

m<lowercase_letter>

to jump back to a saved bookmark, use this command:

'<lowercase_letter>

You can have up to 26 bookmarks, named a-z.


