
SSL Tunnels

Introduction

As you probably know, SSL protects data communications by
encrypting all data exchanged between a client and a server using
cryptographic algorithms. This makes it very difficult, if not
impossible, for hackers to extract information from network traffic,
even if they manage to capture data packets using capturing tools like
tcpdump or ethereal (recently renamed WireShark).

While many network services, such as web servers, support using SSL
directly, other services do not. The stunnel application is designed to
allow administrators to protect those services that do not natively
support SSL encryption, without needing to modify the original service
in any way.

If the client application supports SSL, then no changes are needed at
that end. However, you can also pass data through an SSL tunnel
even if the client side application does not support SSL. To make this
work, you must run the stunnel program both on the local client and
also on the remote server.

The client side stunnel will be configured to accept an incoming
(unencrypted) data on a specific port. Whenever it receives this data,
it will encrypt the data and forward it to the stunnel program running
on the server. The server's stunnel program will then decode the data
back into its original format and then forwards the decrypted data to
the actual service's port. Of course it also captures any data returned
by the service, encrypts the responses and send the returned data
back to the client's stunnel.

The advantage to this is that neither the application, nor the service,
need to modified in any way, yet your data is protected. You will need
to know the port number the application uses to communicate with the
service of course. There is one other advantage to using an SSL
tunnel in this manner. If desired, you can configure the server to only
accept incoming connections from clients that have a known SSL
certificate. To do that you must generate new certificates for the
client and copy the resulting file to both the server and the client in
some secure fashion, such as via an SSH connection, an SSL web
page, or perhaps via hand delivered floppy disk.

Installing STunnel

The stunnel program is available for both UNIX and Windows based
systems. Visit http://www.stunnel.org to download either the source
code, or a pre-built binary version for your computers. You will also
need a version of OpenSSL, which is a library that performs the actual
encryption/decryption of the data. Most Linux distributions include a
copy of OpenSSL. If you do not have it or you can download the
OpenSSL from http://www.openssl.org. The Windows version of the
stunnel program already includes the required OpenSSL library.

If there is a binary package available for your system (RPM, DEB,
etc...), use your Linux package management tools to install. For other
Linux systems, you must build and install the stunnel program
following the standard 5 step process:

$ tar xzvf <path>/stunnel-4.04.tar.gz
$ cd stunnel-4.04
$./configure
$ make
$ make install

Now that stunnel is installed, it is time to configure it. You should have
two computers available at this point, one to act as the client and
another as the server.

http://www.stunnel.org/
http://www.openssl.org/

Configuring STunnel

You can run stunnel two different ways. You can setup your network
super-server, inetd (or xinetd) to run the stunnel program only when a
new incoming connection is received, or you can run stunnel in
daemon mode which means it runs continuously. The server based
mode is faster and a bit easier, so let's setup an SSL tunnel to protect
the IMAP service.

First we need to setup a configuration file that controls the options
used by stunnel. Create the file /usr/local/etc/stunnel/stunnel-
imap.conf and add the following lines:

IMAP over SSL configuration file

cert = /usr/local/etc/stunnel/stunnel.pem
setuid = nobody
setgid = nobody
chroot = /usr/local/etc/stunnel
pid = /stunnel-imap.pid

Optional entries
output = /var/log/stunnel-imap.log
debug = 7

[imaps]
accept = 993
connect = 143

Explanation:

The file /usr/local/etc/stunnel/stunnel.pem will be used as the
certificate for encryption and/or authentication. This certificate was
generated when you built stunnel, but you can create additional
certificates if needed.

The setuid and setgid lines force stunnel to assume the identity of the
named user and group, which also adds a measure of extra security
should a hacker gain control over the stunnel program. In this case,
the hacker would only gain the privileges of the user named "nobody".

The chroot line makes stunnel treat the directory
/usr/local/etc/stunnel directory as its root directory. This adds a bit
of protection should a hacker manage to gain control over the stunnel
program itself. Even if this should happen, the hacker could only gain
access to files and directories under the /usr/local/etc/stunnel
directory, which should limit the amount of possible damage they can
perform. Remember that the user listed under the setuid entry must

be able to read and create files in this directory, which means you
probably should change the ownership of the directories and files to
match the setuid user account.

The pid line tells stunnel to store its process id in the named file. That
can be used by scripts to kill and restart the stunnel program. Keep in
mind that this file will be created using the chroot entry. In our
example, this creates the file /usr/local/etc/stunnel/stunnel-
imap.pid.

The output and debug entries force stunnel to use debug level 7 (lots
of messages) and saves its messages to /var/log/stunnel-imap.log.
If you do not have these entries, then stunnel will normally log its
messages to the /var/log/messages file using your standard syslog
daemon.

Finally, the [imaps] section tells stunnel to accept incoming SSL
encrypted data on port 993 and to send the data to port 143 (standard
IMAP) after it is decrypted. The name of the service imaps must match
the name of the port from your /etc/services file for this to work
correctly.

Now that we have a valid configuration file, we can start the stunnel
program using a command like this:

/usr/local/sbin/stunnel /usr/local/etc/stunnel/stunnel-imap.conf

We are now ready to test the tunnel. If your e-mail program support
the SSL protocol, you can begin using port 993 to connect to the
server instead of port 143. KMail has SSL support built-in, so it can
begin using the new SSL tunnel directly.

Original Configuration (IMAP without SSL):

New Configuration (IMAP with SSL):

However, if your e-mail program does not understand SSL natively,
then this will not work correctly. In that case, you also need to run a
client side stunnel. Let's do that next.

Configuring a Client-Side Tunnel

This is very similar to setting up the server side. First you must
download and install the stunnel program of course. The only real
difference in the configuration is the direction of the port numbers.
Create the file /usr/local/etc/stunnel/stunnel-imap.conf on the
client. Add the following lines:

Client IMAP over SSL configuration file

cert = /usr/local/etc/stunnel/stunnel.pem
client = yes
chroot = /usr/local/etc/stunnel
pid = /stunnel-imap.pid
setuid = nobody
setgiud = nobody

Optional entries
output = /var/log/stunnel-imap.log
debug = 7

[imap2]
accept = 143
connect = wolf.bamafolks.com:993

We have added the new client line and of course we have a section
called [imap2]. It uses reversed port numbers for the accept and
connect lines. You should also notice how the connect line specifies a
remote computer name and port number.

Next, run the stunnel program on the client using a command like this:

/usr/local/sbin/stunnel /usr/local/etc/stunnel/stunnel-imap.conf

Now you can use the SSL tunnel to communicate with the IMAP server
even if the e-mail program does not understand SSL. In this case,
point your e-mail program to the local computer's port 143. The
locally running stunnel will then make a connection to the remote
computer's port 993, which is also running stunnel. The remote
stunnel will in turn connect to its local port 143 and even though you
have not asked your e-mail program to use SSL, all network packets
are encrypted and the communications between the e-mail client and
e-mail server are secure.

KMail configuration (Using local stunnel)

You can use this kind of setup to encrypt almost any protocol, not just
IMAP. You just need to determine the port number the service uses
and run a tunnel at each end.

A few protocols are quite complex and cannot be run through an SSL
tunnel in this manner, notably FTP and telnet. The SSH protocol
includes replacement programs for both telnet and ftp, called ssh and
sftp, so you should use those programs instead if you want security.
You should also take a look at the scp utility, which can also transfer
files securely using a syntax similar to the standard cp command.

Authentication Using STunnel

Now that we can establish SSL tunnels, we can look at restricting the
users that can use the tunnels. This feature adds an extra level of
security, since not only will the SSL certificate be used to encrypt the
data, but the server will refuse to open a connection unless it
recognizes the certificate the client is using.

Server Side Configuration

Let's modify our previous IMAP setup to require certificate verification.
First, modify the server's stunnel configuration file to read as follows:

IMAP over SSL configuration file

cert = /usr/local/etc/stunnel/server.pem
setuid = nobody
setgid = nobody
chroot = /usr/local/etc/stunnel
pid = /stunnel-imap.pid
verify = 3
CAfile = /etc/ssl/misc/demoCA/cacert.pem
CApath = /certs

Optional entries
output = /var/log/stunnel-imap.log
debug = 7

[imaps]
accept = 993
connect = 143

If you examine this file closely, you will see only I made three new
entries named verify, CAfile, and CApath.

The verify option controls the level of peer certificate authentication to
perform when clients connect to the server. Possible values are:

1 - verify certificate if present
2 - verify certificate always
3 - verify certificate against locally installed versions
default - no verification needed

Option 1 will test the client's certificate and reject the connection if
invalid, but does not require the client to use one at all. In other
words, you could comment out the cert line on the the client side at it
will still work. Self-signed certificates are not considered valid
however, so only certificates used by clients that are signed by a valid

CA will be allowed.

If you use option 2, then the client's certificate must both be available
and valid to allow a connection.

Finally, option 3 restricts connections to clients that are using a
certificate and that certificate has also been copied to the server. This
is a bit trickier to setup, but is not too difficult.

The CAfile entry is required if you are creating self-signed certificates.
Since I used the /etc/ssl/misc/CA.pl script to create both a new server
and client certificates, I entered the full path the the demoCA's
certificate file.

Finally, we need a place to store client certificates. I choose to create
the subdirectory named /usr/local/etc/stunnel/certs for this
purpose. If you use the chroot option, remember this directory must
be found under the chroot directory. If you do not use the chroot
option, then you should enter the full path to the directory where you
store the client certificates.

Creating Certificates

At this point we need to create a new certificate for the client. If your
Linux distribution includes tools to create and manage SSL certificates
(for example, Yast under SUSE), then you should use that tool. If you
do not have a SSL management tool, you should be able to adapt the
following steps to your distribution:

I used the same scripts under the /etc/ssl/misc directory as we used
to generate a certificate for our Apache server. I also generated a new
server certificate using those same scripts.

Here are the commands need to generate the certificates in the
correct format for use with stunnel:

Step 1: Make the /etc/ssl/misc directory the current working directory

$ cd /etc/ssl/misc

Step 2: Create a new Certificate Authority (only do this one time!)

$./CA.pl -newca
{Enter values as needed here}

Step 3: Create a new request for a certificate (server)

$./CA.pl -newreq
{Enter values as needed here}

Step 4: Sign the request and create the actual certificate file.

$./CA.pl -sign
{Enter pass phrase and answer questions here}

Step 5: Remove the pass phrase (causes problems with stunnel)

$ openssl rsa -in newreq.pem -out newreq_nopasswd.pem

Step 6: Combine the request and the certificate into one file

$ cat new_reqnopasswd.pem newcert.pem > server.pem

Step 7: Copy the new certificate to the correct location

$ cp server.pem /usr/local/etc/stunnel

Step 8: Create a new request for a certificate (client)

$./CA.pl -newreq
{Enter values as needed}

Step 9: Sign the request to create the certificates

$./CA.pl -sign
{Enter pass phrase and answer questions here}

Step 10: Remove the pass phrase (causes problems with stunnel)

$ openssl rsa -in newreq.pem -out newreq_nopasswd.pem

Step 11: Combine the request and the certificate into one file

$ cat new_reqnopasswd.pem newcert.pem > client.pem

Step 12: Copy the client's certificate to the correct location

$ cp client.pem /usr/local/etc/stunnel/certs

NOTE: It would be a good idea to rename the file to
something other than client.pem. For example, hostname-
client.pem would be a good choice. That would allow you
to keep track of the client certificates much easier.

Step 13: Make the certificate directory the current working directory

$ cd /usr/local/etc/stunnel/certs

Step 14: Determine the hashed filename to use for the certificate

$ /etc/ssl/misc/c_hash client.pem

This command will print a line similar to this:

9248922f.0 => client.pem

NOTE: This is needed because of the way SSL works.
When the server receives the client's certificate, it does
not know exactly which file might hold the local copy of the
certificate. To avoid having to open and test every
certificate in the directory, the SSL routines perform a
hashing algorithm that converts the certificate information
into a apparently garbled file name. That garbled name is
used to open and verify the certificate from the client.

Step 15: Create a link to the certificate using the hashed number
printed.

$ ln -s client.pem 9248922f.0

NOTE: We could have also just renamed the certificate
file, but after doing this many times it would be difficult to
remember which hashed file name belongs to which client.
By creating a link instead, you can find the correct file to
delete very easily if you want to remove a client's
privileges.

That should do it for the server side. Restart the stunnel program and
let's move on to configuring the client, which is much simpler.

Client Side Configuration

Before attempting to setup the client side, you must copy the client's
certificate from the server to the client computer. You can do this
many ways, including using scp, FTP, e-mail, or even a floppy disk.
Keep in mind that however you do this, your security is only
guaranteed if nobody can copy or steal the client's certificate.
Personally I like to use the scp command to transfer the certificate file.
A floppy disk would also work, provided you reformat it after the
transfer is complete.

On the client side, we must edit the /usr/local/etc/stunnel/stunnel-
imap.conf file. The only line that should be changed is the cert entry.
Make sure it points to the certificate file you just copied to the client.

Client IMAP over SSL configuration file

cert = /usr/local/etc/stunnel/client.pem
client = yes
chroot = /usr/local/etc/stunnel
pid = /stunnel-imap.pid
setuid = nobody
setgiud = nobody

Optional entries
output = /var/log/stunnel-imap.log
debug = 7

[imap2]
accept = 143
connect = wolf.bamafolks.com:993

After you restart the client's stunnel program, everything should be
working. However unlike the prior example, not just everybody can
use the tunnel. Attempts to connect to the tunnel without first copying
the client's certificate to the server will be rejected. Security is pretty
tight as long as your server does not get compromised.

