
Overview of .NET Class Libraries

The .NET Framework provides a large number of classes, interfaces and
data types that you can use to develop Windows applications and
services.

In general, these libraries have been designed to replace older
technologies, including the Microsoft Foundation Classes (MFC) and
Active Template Library (ALT) for Visual C++, the Component Object
Model (COM) and the ActiveX model used by all languages, and also the
Win32 API which is the core of Windows programming concepts.

While the .NET Framework must obviously still use various technologies
like the Win32 API and COM, it hides the complex details away from the
programmer and can make developing applications for Windows a much
easier task. In addition, since all .NET languages use the exact same set
of classes, interfaces and data types, moving from one .NET language to
another is much simpler.

Each area of the .NET Framework includes many terms that may be a bit
new, including classes, interfaces, enumerations, events, delegates,
namespaces and assemblies. Here is a brief explanation of the terms.

Namespace

A namespace is a collection of classes, enumerations and delegates
under a single name. This provides organization to the entire framework
and also allows the name name to be used again in different
namespaces, without conflicts. The same concept is used in C++
namespaces, Java packages and XML namespaces. Generally, a .NET
namespace is contained within a single Assembly (.DLL or .EXE).

Classes

Classes are code that implements a set of features and can be used
directly by the developer. In many cases a class is an implementation of
one or more interfaces. Classes in the .NET Framework also support the
use of inheritance, so one class can derive from another and add (or
override) features from the base class.

Enumerations

An enumeration is a simple list of constant values with names assigned.

Page: 1

Generally it is easier for programmers to remember symbolic names
than to remember a long list of number values.

Events

An event is triggered whenever the .NET Framework has detected a
change in status that you may be interested in. Events are similar to
standard Windows messages.

Delegates

A delegate is a special class used to implement callbacks into your
source code. Basically, you are declaring that when some event occurs,
you would like the .NET Framework to call a method in your application.
The handle to the method will be stored in a delegate class, which can
possible have several methods listed which can be called in sequence.
Delegate classes can be used for traditional event notifications as well
as callbacks.

Assembly

This term is used instead of application. Basically an assembly is made
up of one or more compiled source code units that are grouped together
into a single unit. Assemblies can have either a .DLL or .EXE extension.
In general, a .DLL assembly provides classes and services that can be
used by other assemblies, while .EXE assemblies are equivalent to an
application and will make use of other assemblies. Each assembly file
also includes an assembly manifest, which is meta information that
describes the assembly's name, version and dependencies to other
assemblies. The meta information is a large part of ability of the .NET
Framework to avoid the symptom sometimes called DLL hell. The .NET
Framework installs its assemblies under the Windows system folder.
Applications are free to use assemblies from this global catalog, or to
install assemblies in their own application folder. In that case, .NET will
use the application provided assemblies instead of the system
assemblies. This allows you to ship versions of assemblies that you
know work with your application and avoid problems when users
upgrade the system assemblies.

Page: 2

Major Namespaces in the .NET Framework

Microsoft.CSharp
Contains classes that support compilation and code generation
using the C# language.

Microsoft.JScript
Contains the JScript runtime and classes that support compilation
and code generation using the JScript language.

Microsoft.VisualBasic
Contains the Visual Basic .NET runtime. This runtime is used with
the Visual Basic .NET language. This namespace also contains
classes that support compilation and code generation using the
Visual Basic .NET language.

Microsoft.Vsa
Contains interfaces that allow you to integrate script for the .NET
Framework script engines into applications, and to compile and
execute code at run time.

Interface Description

IVsaCode Represents code to be compiled by a script engine.

IVsaEngine Defines the methods and properties supported by
script engines.

IVsaError Represents an error detected by the engine during
the call to the IVsaEngine.Compile method.

IVsaGlobalItem Describes global objects added to the script engine.

IVsaItem Defines the methods and properties all script engine
items are required to support.

IVsaItems Defines a collection of items that can be accessed
using an index or a name.

IVsaPersistSite Manages a project's code using save and load
operations.

IVsaReferenceIte
m

Describes references added to the script engine.

IVsaSite Defines the interface the host (developer's
environment) must support to communicate with the
script engine.

Page: 3

Enumeration Description

VsaError The exceptions that can be raises by the script
engine.

VsaItemFlag Identifiers for script objects, including Class, Module
or None.

VsaItemType Identifiers for script objects, including Code,
Reference and AppGlobal.

Microsoft.Win32
Provides two types of classes: those that handle events raised by
the operating system and those that manipulate the system
registry.

Classes Description

PowerModeChangedEventArgs Holds information about a
PowerModeChanged event.

Registry Base class that provides access to the
Windows registry keys and values.

RegistryKey Class that represents a single key in
the registry.

SessionEndedEventArgs Holds information about a
SessionEnded event.

SessionEndingEventArgs Holds information about a
SessionEnding event.

SystemEvents Global set of system events. Cannot
be inherited from.

TimerElapsedEventArgs Holds information about a
TimerElapsed event.

UserPreferenceChangedEventA
rgs

Holds information about a
UserPreferenceChanged event.

UserPreferenceChangingEvent
Args

Holds information about a
UserPreferenceChanging event.

Delegate Description

PowerModeChangedEventHand
ler

Represents the method that will be
called for PowerModeChanged events.

Page: 4

Delegate Description

SessionEndedEventHandler Represents the method that will be
called for SessionEnded events.

SessionEndingEventHandler Represents the method that will be
called for SessionEnding events.

TimerElapsedEventHandler Represents the method that will be
called for TimerElapsed events.

UserPreferenceChangedEventH
andler

Represents the method that will be
called for UserPreferenceChanged
events.

UserPreferenceChangingEvent
Handler

Represents the method that will be
called for UserPreferenceChanging
events.

Enumeration Description

PowerModes List of supported power modes.

RegistryHive List of top-level hives for foreign
machines.

SessionEndReasons List of reasons for ending a session.

UserPreferenceCategory Identifies what area of user preference
was changed.

System
Contains fundamental classes and base classes that define
commonly used value and reference data types, events and event
handlers, interfaces, attributes, and processing exceptions.

Other classes provide services supporting data type conversion,
method parameter manipulation, mathematics, remote and local
program invocation, application environment management, and
supervision of managed and unmanaged applications.

Class* Description

Activator Used to create local or remote objects, or to obtain
references to remote objects.

AppDomain Represents an application domain, which is equivalent
to a thread of execution. Cannot be inherited.

Page: 5

Class* Description

Array Supports creating, manipulating, searching and sorting
arrays. This is the base class for all other array classes
in the .NET Framework.

Attribute Base class for custom attributes.

BitConverter Converts base data types into an array of bytes and
vice-versa. Used often for marshaling/unmarshaling
objects between applications or across the network.

Buffer Represents a chunk of memory as an array of bytes.

CharEnumerat
or

Provides support for iterating strings character-by-
character.

Console Represents the standard input, output and error
streams for console applications. Cannot be inherited.

Convert Supports converting one base data type into another.
Data types include Boolean, Char, SByte, Byte, Int16,
Int32, Int64, UInt16, UInt32, UInt64, Single, Double,
Decimal, DateTime and String.

Delegate Base class for all other delegate classes.

Enum Base class for all other enumerations.

Environment This class holds environment information including
command line strings, current working directory,
computer name, and operating system information.

EventArgs Base class for all event argument classes.

Exception Base class for all exceptions.

GC The system garbage collector, which is a service that
automatically recovers unused memory in .NET
applications. This is a system service and can be
controlled using this class.

MarshalByRefO
bject

Enables accessing objects in other application
domains.

Math Supplies a wide range of mathematical constants and
functions.

MulticastDeleg
ate

Base class for delegates that support notification of
more than one callback method of an event.

Object The base class for all other .NET classes.

Page: 6

Class* Description

OperatingSyste
m

This class represents operating system information
including version and platform identifiers.

Random A pseudo-random number generator.

String Represents an immutable (i.e. Non-modifiable) series
of characters.

TimeZone Represents time zone information.

Type Holds information about other types such as classes,
data types, enumerations, and array types. Using this
class you can query the system to find out details
about another data type, including which assembly it is
defined by, what attributes, events and methods it
supports and much more.

Uri Represents a URI (Uniform Resource Identifier) and
provides methods to access individual parts of the URI
such as protocol, host, etc.

ValueType Base class for value type classes such as Int16, Byte
and others.

Version Represents the version number attribute of an
assembly.

WeakReferenc
e

Special class that allows you to hold a reference to an
object, but still allows the object to be garbage
collected if memory is tight.

* This is not a complete list. Consult the documentation for more
information.

Interface* Description

ICloneable Supports cloning, which allows you to create a new
instance of an object with the same values as the
original.

IComparable A generalized way for classes to support comparing
objects to each other.

IConvertible Defines methods to convert objects into equivalent CLR
types. You can support methods like ToString(),
ToInt16(), etc...

IDisposable Provides methods that can release unmanaged blocks
of memory. Similar in concept to destructors.

Page: 7

Interface* Description

IFormattable Defines methods that support formatted conversion of
objects into strings.

IServiceProvide
r

Defines methods for service objects, which are objects
that provide custom support to other objects.

* This is not a complete list. Consult the documentation for more
information.

Structure* Description

ArgIterator Holds a variable list of arguments for methods that can
be invoked with different numbers of arguments.

Boolean A boolean value type.

Byte An 8-bit unsigned integer.

Char A Unicode character.

DateTime An instant in time including both date and time values.

Decimal A decimal number type usually used for financial
calculations. Values range from
+79,228,162,514,264,337,593,543,950,335 to
-79,228,162,514,264,337,593,543,950,335 and
mathematical operations do not have rounding errors.

Double A double-precision floating-point type.

Guid A globally unique identifier.

Int16 A 16-bit signed integer.

Int32 A 32-bit signed integer.

Int64 A 64-bit signed integer.

IntPtr Holds a pointer or handle to platform-specific objects
or devices.

SByte An 8-bit signed integer.

Single A single-precision floating point type.

TimeSpan Represents a time interval.

UInt16 A 16-bit unsigned integer.

UInt32 A 32-bit unsigned integer.

UInt64 A 64-bit unsigned integer.

UIntPtr Holds a pointer or handle to platform-specific objects
or devices.

Page: 8

Structure* Description

Void Used for methods that do not return another data type.
* This is not a complete list. Consult the documentation for more
information.

Delegate* Description

AsyncCallback References a callback method that will be notified
when an asynchronous operation completes.

EventHandler Represents the method that handles an event with no
event data.

* This is not a complete list. Consult the documentation for more
information.

Enumeration
*

Description

DayOfWeek Specifies the day of the week.

Environment.S
pecialFolder

Specifies constants used to retrieve paths to system
folders.

PlatformID Describes platforms supported by an assembly.

TypeCode Specifies the type of an object.
* This is not a complete list. Consult the documentation for more
information.

System.CodeDom
Contains classes that can be used to represent the elements and
structure of a source code document.

System.CodeDom.Compiler
Contains classes that can be used to manage the generation and
compilation of source code in supported programming languages
based on the structure of Code Document Object Model (CodeDOM)
source code models.

System.Collections
Contains interfaces and classes that define various collections of
objects, such as lists, queues, bit arrays, hashtables and
dictionaries.

Class Description

ArrayList Implements the IList interface for arrays that can
dynamically grow as needed.

Page: 9

Class Description

BitArray Manages a compact array of boolean values as a
series of bits.

CaseInsensitiveCom
parer

Compares two objects, ignoring string case.

CaseInsensitiveHash
CodeProvider

Supplies hash codes for objects, ignoring string
case.

CollectionBase Abstract base class for the other collection
classes.

Comparer Compares two objects. Case sensitive when used
to compare strings.

DictionaryBase Abstract base class for collections that support
named key-value pairs.

Hashtable A collection of key-value pairs organized based on
the hash codes of the keys.

Queue A first-in, first-out collection.

ReadOnlyCollection
Base

Abstract base class for collections that are read-
only.

SortedList A collection of key-value pairs organized by keys
in sorted sequence. Values can be accessed
either via the key, or an index.

Stack A last-in, first-out collection.

Interface Description

ICollection A common set of methods supported by all
collections.

IComparer Defines methods used to compare two objects.

IDictionary Methods used to work on key-value pairs.

IDictionaryEnumerat
or

Methods used to iterate over dictionaries.

IEnumerable Defines methods that support iteration over
collections.

IEnumerator Supports simple iteration of collections.

IHashCodeProvider Defines methods used to generated hash codes
for objects.

Page: 10

Interface Description

IList Defines methods to provide index access to
collections that work like arrays.

Structure Description

DictionaryEntry Holds a key-value pair that can be set or retrieved.

System.Collections.Specialized
Contains specialized and strongly typed collections; for example, a
linked list dictionary, a bit vector, and collections that contain only
strings.

System.ComponentModel
Provides classes that are used to implement the run-time and
design-time behavior of components and controls. This namespace
includes the base classes and interfaces for implementing
attributes and type converters, binding to data sources, and
licensing components.

System.ComponentModel.Design
Enables developers to build custom user interface controls and
include them in a design-time environment to be used along with
vendor controls.

System.ComponentModel.Design.Serialization
Provides support for component serialization by designers. The
classes in this namespace can be used to provide custom
serializers, manage the serialization of particular types, manage
designer loading and designer serialization, and optimize designer
reloading.

System.Configuration
Provides classes and interfaces that allow you to programmatically
access .NET Framework configuration settings and handle errors in
configuration files (.config files).

Class Description

AppSettingsReader Supports reading values from the
application's .config file.

ConfigurationException The exception that is thrown if an error occurs
in a configuration setting.

ConfigurationSettings Represents one section of a configuration file.

Page: 11

Class Description

DictionarySectionHandl
er

Reads key-value pairs from a configuration
section.

IgnoreSectionHandler Provides support for sections in a configuration
file not supported by System.Configuration
classes.

NameValueSectionHan
dler

Reads name-value pairs from a configuration
section.

SingleTagSectionHandl
er

Supports reading XML attributes as key-value
pairs.

System.Configuration.Assemblies
Contains classes that are used to configure an assembly.

System.Configuration.Install
Provides classes that allow you to write custom installers for your
own components. The Installer class is the base class for all custom
installers in the .NET Framework.

System.Data
Consists mostly of the classes that constitute the ADO.NET
architecture. The ADO.NET architecture enables you to build
components that efficiently manage data from multiple data
sources. In a disconnected scenario (such as the Internet), ADO.NET
provides the tools to request, update, and reconcile data in multiple
tier systems. The ADO.NET architecture is also implemented in
client applications, such as Windows Forms, or HTML pages created
by ASP.NET.

Class* Description

DataColumn The schema of a column in a DataTable.

DataRelation Represents a parent/child relationship between two
data tables.

DataRow Represents a row of data from a DataTable.

DataRowView A special form which is connected to a database table
and updates as the current row moves.

DataTable Represents an in-memory data table.

PropertyCollecti
on

A collection of properties that can be applied to a
DataColumn, DataRow, or DataTable.

* This is not a complete list. Consult the documentation for more
information.

Page: 12

System.Data.Common
Contains classes shared by the .NET data providers. A .NET data
provider describes a collection of classes used to access a data
source, such as a database, in the managed space.

System.Data.OleDb
Encapsulates the OLE DB .NET Data Provider. A .NET data provider
describes a collection of classes used to access a data source, such
as a database, in the managed space.

System.Data.SqlClient
Encapsulates the SQL Server .NET Data Provider. A .NET data
provider describes a collection of classes used to access a data
source, such as a database, in the managed space.

System.Data.SqlTypes
Provides classes for native data types within SQL Server. These
classes provide a safer, faster alternative to other data types. Using
the classes in this namespace helps prevent type conversion errors
caused in situations where loss of precision could occur.

System.Diagnostics
Provides classes that allow you to interact with system processes,
event logs, and performance counters. This namespace also
provides classes that allow you to debug your application and to
trace the execution of your code.

Classes* Description

Debug Provides methods to print debugging messages and
check for logic errors in the code.

EventLog Provides support for using the Windows Event Log.

PerformanceCoun
ter

Provides support for accessing and creating
Windows Performance Monitor counters.

Process Provides support for accessing local and remote
processes, including the ability to start and stop
system services.

ProcessThread Represents an operating system thread.

Trace Provides methods and properties that help you
trace the execution of code.

* This is not a complete list. Consult the documentation for more
information.

System.Diagnostics.SymbolStore
Provides classes that allow you to read and write debug symbol

Page: 13

information, such as source line to Microsoft intermediate language
(MSIL) maps. Compilers targeting the .NET Framework can store the
debug symbol information into a programmer's database (PDB)
files. Debuggers and code profiler tools can read the debug symbol
information at run time.

System.DirectoryServices
Provides easy access to Active Directory from managed code.

System.Drawing
Provides access to GDI+ basic graphics functionality. More
advanced functionality is provided in the
System.Drawing.Drawing2D, System.Drawing.Imaging, and
System.Drawing.Text namespaces.

Classes* Description

Bitmap Represents pixel data images.

Brush A class used for filling and painting areas like
rectangles, ellipses, pies and polygons.

Font Defines a text format including font family, size, and
style.

Graphics Represents a drawing surface. (Like a device
context.)

Icon Represents a Windows icon.

Image Abstract base class used by the Bitmap, Icon and
Metafile classes.

ImageAnimator Animates images using time-based frames.

Pen Defines an object used for drawing lines and circles.

Region Defines the interior of a graphics shape.

StringFormat Encapsulates text layout information, including
alignment, spacing, ellipsis insertion, and national
digit substitution.

* This is not a complete list. Consult the documentation for more
information.

Structure* Description

Color An ARGB (alpha, red, green, blue) color.

Point An integer based x,y coordinate.

PointF A floating-point based x,y coordinate.

Page: 14

Structure* Description

Rectangle Stores location and size of rectangles.

Size Stores height and width of rectangular areas.
* This is not a complete list. Consult the documentation for more
information.

System.Drawing.Design
Contains classes that extend design-time user interface (UI) logic
and drawing. You can further extend this design-time functionality
to create custom toolbox items, type-specific value editors that can
edit and graphically represent values of their supported types, or
type converters that can convert values between certain types.

System.Drawing.Drawing2D
Provides advanced 2-dimensional and vector graphics functionality.
This namespace includes the gradient brushes, the Matrix class
(used to define geometric transforms), and the GraphicsPath class.

System.Drawing.Imaging
Provides advanced GDI+ imaging functionality. Basic graphics
functionality is provided by the System.Drawing namespace.

System.Drawing.Printing
Provides print-related services.

System.Drawing.Text
Provides advanced GDI+ typography functionality. Basic graphics
functionality is provided by the System.Drawing namespace. The
classes in this namespace allow users to create and use collections
of fonts.

System.EnterpriseServices
Provides an important infrastructure for enterprise applications.
COM+ provides a services architecture for component
programming models deployed in an enterprise environment. This
namespace provides .NET Framework objects with access to COM+
services, making the .NET Framework objects more practical for
enterprise applications.

System.EnterpriseServices.CompensatingResourceManager
Provides classes that allow you to use a Compensating Resource
Manager (CRM) in managed code. A CRM is a service provided by
COM+ that enables you to include non transactional objects in
Microsoft Distributed Transaction Coordinator (DTC) transactions.
Although CRMs do not provide the capabilities of a full resource
manager, they do provide transactional atomicity (all-or-nothing
behavior) and durability through the recovery log.

System.Globalization
Contains classes that define culture-related information, including

Page: 15

the language, the country/region, the calendars in use, the format
patterns for dates, currency, and numbers, and the sort order for
strings.

System.IO
Contains types that allow synchronous and asynchronous reading
and writing on data streams and files.

Classes* Description

BinaryReader Reads primitive data types as
binary values.

BinaryWriter Writes primitive data types as
binary values to streams.

BufferedStream Adds buffering capabilities to other
streams.

Directory Static methods for creating,
moving and enumerating through
directories and subdirectories.

File Static methods for creating,
copying, moving, deleting and
opening files. Works closely with
the FileStream class.

FileStream Allows opening a file as a stream
for reading or writing.

FileSystemWatcher Raises events when files or
directories are changed.

MemoryStream A stream connected to a block of
memory instead of a physical file.

Path Performs operations on a file
and/or pathname.

Stream A generic stream class that
represents a series of bytes.

StreamReader A TextReader used to read
characters from a byte stream.

StreamWriter A TextWriter used to write
characters to a byte stream.

StringReader A TextReader used to read
characters from a string.

StringWriter A TextWriter used to write
characters to a string.

Page: 16

Classes* Description

TextReader A reader that can read characters
from a byte stream.

TextWriter A writer that can write characters
to a byte stream.

* This is not a complete list. Consult the documentation for more
information.

System.IO.IsolatedStorage
Contains types that allow the creation and use of isolated stores.
With these stores, you can read and write data that less trusted
code cannot access and prevent the exposure of sensitive
information that can be saved elsewhere on the file system. Data is
stored in compartments that are isolated by the current user and
by the assembly in which the code exists.

System.Management
Provides access to a rich set of management information and
management events about the system, devices, and applications
instrumented to the Windows Management Instrumentation (WMI)
infrastructure.

System.Management.Instrumentation
Provides the classes necessary for instrumenting applications for
management and exposing their management information and
events through WMI to potential consumers. Consumers such as
Microsoft Application Center or Microsoft Operations Manager can
then manage your application easily, and monitoring and
configuring of your application is available for administrator scripts
or other applications, both managed as well as unmanaged.

System.Messaging
Provides classes that allow you to connect to, monitor, and
administer message queues on the network and send, receive, or
peek messages.

System.Net
Provides a simple programming interface for many of the protocols
used on networks today. The WebRequest and WebResponse
classes form the basis of what are called pluggable protocols, an
implementation of network services that enables you to develop
applications that use Internet resources without worrying about the
specific details of the individual protocols.

Page: 17

Classes* Description

Authorization A class used to hold an authentication message for
an Internet server.

Cookie Class used to manage cookies.

Dns Class used to perform name lookups using the
Domain Name System (DNS).

EndPoint Abstract base class that defines a network address.

HttpWebRequest HTTP-specific implementation of the generic
WebRequest class.

HttpWebRespons
e

HTTP-specific implementation of the generic
WebResponse class.

IPAddress Represents an IP address.

IPEndPoint A network endpoint including IP address and port
number.

IPHostEntry Internet host address information.

WebClient Provides many common methods for sending and
receiving data using a URI.

WebRequest Abstract base class representing a network request.

WebResponse Abstract base class representing a network
response.

* This is not a complete list. Consult the documentation for more
information.

System.Net.Sockets
Provides a managed implementation of the Windows Sockets
(Winsock) interface for developers who need to tightly control
access to the network.

System.Reflection
Contains classes and interfaces that provide a managed view of
loaded types, methods, and fields, with the ability to dynamically
create and invoke types.

System.Reflection.Emit
Contains classes that allow a compiler or tool to emit metadata and
Microsoft intermediate language (MSIL) and optionally generate a
PE file on disk. The primary clients of these classes are script
engines and compilers.

System.Resources
Provides classes and interfaces that allow developers to create,
store, and manage various culture-specific resources used in an

Page: 18

application.
System.Runtime.CompilerServices

Provides functionality for compiler writers using managed code to
specify attributes in metadata that affect the run-time behavior of
the common language runtime. The classes in this namespace are
for compiler writers use only.

System.Runtime.InteropServices
Provides a collection of classes useful for accessing COM objects,
and native APIs from .NET. The types in this namespace fall into the
following areas of functionality: attributes, exceptions, managed
definitions of COM types, wrappers, type converters, and the
Marshal class.

System.Runtime.InteropServices.Expando
Contains the IExpando interface which allows modification of an
object by adding or removing its members.

System.Runtime.Remoting
Provides classes and interfaces that allow developers to create and
configure distributed applications.

System.Runtime.Remoting.Activation
Provides classes and objects that support server and client
activation of remote objects.

System.Runtime.Remoting.Channels
Contains classes that support and handle channels and channel
sinks, which are used as the transport medium when a client calls a
method on a remote object.

System.Runtime.Remoting.Channels.Http
Contains channels that use the HTTP protocol to transport
messages and objects to and from remote locations. By default, the
HTTP channels encode objects and method calls in SOAP format for
transmission, but other encoding and decoding formatter sinks can
be specified in the configuration properties of a channel.

System.Runtime.Remoting.Channels.Tcp
Contains channels that use the TCP protocol to transport messages
and objects to and from remote locations. By default, the TCP
channels encode objects and method calls in binary format for
transmission, but other encoding and decoding formatter sinks can
be specified in the configuration properties of a channel.

System.Runtime.Remoting.Contexts
Contains objects that define the contexts all objects reside within. A
context is an ordered sequence of properties that defines an
environment for the objects within it. Contexts are created during
the activation process for objects that are configured to require
certain automatic services such synchronization, transactions, just-
in-time (JIT) activation, security, and so on. Multiple objects can live

Page: 19

inside a context.
System.Runtime.Remoting.Lifetime

Contains classes that manage the lifetime of remote objects.
Traditionally, distributed garbage collection uses reference counts
and pinging for control over the lifetime of objects. This works well
when there are a few clients per service, but doesn't scale well
when there are thousands of clients per service. The remoting
lifetime service associates a lease with each service, and deletes a
service when its lease time expires. The lifetime service can take on
the function of a traditional distributed garbage collector, and it
also adjusts well when the numbers of clients per server increases.

System.Runtime.Remoting.Messaging
Contains classes used to create and remote messages. The
remoting infrastructure uses messages to communicate with
remote objects. Messages are used to transmit remote method
calls, to activate remote objects, and to communicate information.
A message object carries a set of named properties, including
action identifiers, envoy information, and parameters.

System.Runtime.Remoting.Metadata
Contains classes and attributes that can be used to customize
generation and processing of SOAP for objects and fields. The
classes of this namespace can be used to indicate the SOAPAction,
type output, XML element name, and the method XML namespace
URI.

System.Runtime.Remoting.Metadata.W3cXsd2001
Contains the XML Schema Definition (XSD) defined by the World
Wide Web Consortium (W3C) in 2001. The XML Schema Part2: Data
types specification from W3C identifies format and behavior of
various data types. This namespace contains wrapper classes for
the data types that conform to the W3C specification. All date and
time types conform to the ISO standards specification.

System.Runtime.Remoting.MetadataServices
Contains the classes used by the Soapsuds.exe command line tool
and the user code to convert metadata to and from XML schema for
the remoting infrastructure.

System.Runtime.Remoting.Proxies
Contains classes that control and provide functionality for proxies.
A proxy is a local object that is an image of a remote object. Proxies
enable clients to access objects across remoting boundaries.

System.Runtime.Remoting.Services
Contains service classes that provide functionality to the .NET
Framework.

System.Runtime.Serialization
Contains classes that can be used for serializing and deserializing

Page: 20

objects. Serialization is the process of converting an object or a
graph of objects into a linear sequence of bytes for either storage
or transmission to another location. Deserialization is the process of
taking in stored information and recreating objects from it.

System.Runtime.Serialization.Formatters
Provides common enumerations, interfaces, and classes that are
used by serialization formatters.

System.Runtime.Serialization.Formatters.Binary
Contains the BinaryFormatter class, which can be used to serialize
and deserialize objects in binary format.

System.Runtime.Serialization.Formatters.Soap
Contains the SoapFormatter class, which can be used to serialize
and deserialize objects in the SOAP format.

System.Security
Provides the underlying structure of the common language runtime
security system, including base classes for permissions.

System.Security.Cryptography
Provides cryptographic services, including secure encoding and
decoding of data, as well as many other operations, such as
hashing, random number generation, and message authentication.

System.Security.Cryptography.X509Certificates
Contains the common language runtime implementation of the
Authenticode X.509 v.3 certificate. This certificate is signed with a
private key that uniquely and positively identifies the holder of the
certificate.

System.Security.Cryptography.Xml
Contains an XML model for exclusive use within the .NET framework
security system. This XML model should not be used for general
purposes. This model allows XML objects to be signed with a digital
signature.

System.Security.Permissions
Defines classes that control access to operations and resources
based on policy.

System.Security.Policy
Contains code groups, membership conditions, and evidence. These
three types of classes are used to create the rules applied by the
common language runtime security policy system. Evidence classes
are the input to security policy and membership conditions are the
switches; together these create policy statements and determine
the granted permission set. Policy levels and code groups are the
structure of the policy hierarchy. Code groups are the
encapsulation of a rule and are arranged hierarchically in a policy
level.

System.Security.Principal

Page: 21

Defines a principal object that represents the security context
under which code is running.

System.ServiceProcess
Provides classes that allow you to implement, install, and control
Windows service applications. Services are long-running
executables that run without a user interface. Implementing a
service involves inheriting from the ServiceBase class and defining
specific behavior to process when start, stop, pause, and continue
commands are passed in, as well as custom behavior and actions to
take when the system shuts down.

System.Text
Contains classes representing ASCII, Unicode, UTF-7, and UTF-8
character encodings; abstract base classes for converting blocks of
characters to and from blocks of bytes; and a helper class that
manipulates and formats String objects without creating
intermediate instances of String.

System.Text.RegularExpressions
Contains classes that provide access to the .NET Framework regular
expression engine. The namespace provides regular expression
functionality that may be used from any platform or language that
runs within the Microsoft .NET Framework.

System.Threading
Provides classes and interfaces that enable multithreaded
programming. This namespace includes a ThreadPool class that
manages groups of threads, a Timer class that enables a delegate
to be called after a specified amount of time, and a Mutex class for
synchronizing mutually exclusive threads. This namespace also
provides classes for thread scheduling, wait notification, and
deadlock resolution.

System.Timers
Provides the Timer component, which allows you to raise an event
on a specified interval.

System.Web
Supplies classes and interfaces that enable browser/server
communication. This namespace includes the HTTPRequest class
that provides extensive information about the current HTTP
request, the HTTPResponse class that manages HTTP output to the
client, and the HTTPServerUtility object that provides access to
server-side utilities and processes. System.Web also includes
classes for cookie manipulation, file transfer, exception information,
and output cache control.

System.Web.Caching
Provides classes for caching frequently used resources on the
server. This includes ASP.NET pages, web services, and user

Page: 22

controls. Additionally, a cache dictionary is available for you to
store frequently used resources, such as hashtables and other data
structures.

System.Web.Configuration
Contains classes that are used to set up ASP.NET configuration.

System.Web.Hosting
Provides the functionality for hosting ASP.NET applications from
managed applications outside of Microsoft Internet Information
Server (IIS).

System.Web.Mail
Contains classes that enable you to construct and send messages
using the CDOSYS Message component. The mail message is
delivered through either the SMTP mail service built into Microsoft
Windows 2000 or through an arbitrary SMTP server. The classes in
this namespace can be used either from ASP.NET or from any
managed application.

System.Web.Security
Contains classes that are used to implement ASP.NET security in
Web server applications.

System.Web.Services
Consists of the classes that enable you to build and use Web
Services. A Web Service is a programmable entity residing on a
Web Server exposed via standard Internet protocols.

System.Web.Services.Configuration
Consists of the classes that configure how XML Web services
created using ASP.NET run.

System.Web.Services.Description
Consists of the classes that enable you to publicly describe an XML
Web service by using the Web Services Description Language
(WSDL). Each class in the this namespace corresponds to a specific
element in the WSDL specification, and the class hierarchy
corresponds to the XML structure of a valid WSDL document.

System.Web.Services.Discovery
Consists of the classes that allows XML Web service clients to locate
the available XML Web services on a Web server through a process
called XML Web services Discovery.

System.Web.Services.Protocols
Consists of the classes that define the protocols used to transmit
data across the wire during the communication between XML Web
service clients and XML Web services created using ASP.NET.

System.Web.SessionState
Supplies classes and interfaces that enable storage of data specific
to a single client within a Web application on the server. The
session state data is used to give the client the appearance of a

Page: 23

persistent connection with the application. State information can be
stored within local process memory or, for Web farm configurations,
out-of-process using either the ASP.NET State Service or a SQL
Server database.

System.Web.UI
Provides classes and interfaces that allow you to create controls
and pages that will appear in your Web applications as user
interface on a Web page. This namespace includes the Control
class, which provides all controls, whether HTML, Web, or User
controls, with a common set of functionality. It also includes the
Page control, which is generated automatically whenever a request
is made for a page in your Web application. Also provided are
classes which provide the Web Forms Server Controls data binding
functionality, the ability to save the view state of a given control or
page, as well as parsing functionality for both programmable and
literal controls.

System.Web.UI.Design
Contains classes that can be used to extend design-time support
for Web Forms.

System.Web.UI.Design.WebControls
Contains classes that can be used to extend design-time support
for Web server controls.

System.Web.UI.HtmlControls
Provides classes that allow you to create HTML server controls on a
Web page. HTML server controls run on the server and map directly
to standard HTML tags supported by all browsers. This allows you to
programmatically control the HTML elements on the Web page.

System.Web.UI.WebControls
Contains classes that allow you to create Web server controls on a
Web page. Web controls run on the server and include form
controls such as buttons and text boxes, as well as special purpose
controls such as a calendar. This allows you to programmatically
control these elements on a Web page. Web controls are more
abstract than HTML controls. Their object model does not
necessarily reflect HTML syntax.

System.Windows.Forms
Contains classes for creating Windows-based applications that take
full advantage of the rich user interface features available in the
Microsoft Windows operating system.

Page: 24

Classes* Description

Application Provides static methods for managing an application,
including starting and stopping an application,
processing Windows messages, and getting
information about the application.

AxHost Wrapper class that allows a .NET assembly to use
ActiveX controls.

Button Represents a Windows button control.

CheckBox Represents a Windows checkbox control.

CheckedListBox A list with checkboxes.

Clipboard A class for working with the Windows clipboard for
copy, cut, and paste operations.

ComboBox Represents a Windows combobox.

CommonDialog Class for working with Windows common dialogs
which provide pre-built file open/close, color selection,
font selection and other dialog boxes.

Control Common base class for all other controls.

Cursor Allows you to control the appearance of the mouse
pointer.

DataGrid A spreadsheet style control connected to a database.

FileDialog The file open/save common dialog.

FontDialog The font selection common dialog.

Form Represents an application window or dialog box.

Label A static text control.

ListBox A simple listbox.

ListView A complex list with four possible view modes.

MainMenu Represents a menu on a form.

MessageBox An easy to use pop-up dialog that displays information
to the user.

OpenFileDialog Display an open file dialog.

PictureBox Displays an image.

PrintDialog The print common dialog.

ProgressBar Represents a Windows progress bar.

RadioButton A radio button control.

Page: 25

Classes* Description

RichTextBox A text control that supports rich-text with fonts,
underlying, bold, italics, etc...

SaveFileDialog Displays a file save dialog.

ScrollBar Represents a scroll bar.

Splitter Provides support for user resizable docked windows.

StatusBar Represents a status bar attached to a window.

SystemInformat
ion

Provides system information.

TabControl Manages a set of tab pages.

TextBox A Windows text box control.

Timer Provides support for timed events.

ToolBar Represents a Windows toolbar.

ToolTip Displays short pop-up help when the mouse hovers
over a control.

TreeView Provides a hierarchal view of labeled items.

UserControl An empty control used to create other controls.
* This is not a complete list. Consult the documentation for more
information.

System.Windows.Forms.Design
Contains classes that can be used to extend design-time support
for Windows Forms.

System.Xml
Provides standards-based support for processing XML.

System.Xml.Schema
Provides standards-based support for XML Schemas (XSD).

System.Xml.Serialization
Contains classes that are used to serialize objects into XML format
documents or streams.

System.Xml.XPath
Contains the XPath parser and evaluation engine. It supports the
W3C XML Path Language (XPath) Version 1.0 Recommendation
(www.w3.org/TR/xpath).

System.Xml.Xsl
Provides support for Extensible Stylesheet Transformation (XSLT)
transforms. It supports the W3C XSL Transformations (XSLT)
Version 1.0 Recommendation (www.w3.org/TR/xslt).

Page: 26

