
Enterprise JavaBeans Programming (20 Hours)

Application Server Concepts and Choices

Tomcat

Tomcat is the official reference implementation of the Java Servlet and
JavaServer Pages technologies and is part of the Apache Foundation
Software system. Essentially, it is a web server with the ability to run
both Java Server Pages (JSP) and Java Servlets. Many of the popular
application server come bundled with Tomcat, since the ability to
deliver web pages that make use of Java code is very important,
especially when your developers are already writing code using the
Java language.

A Java Servlet is a mini-application that generates HTML pages
dynamically. It works very similar to Common Gateway Interface (CGI)
applications. A CGI application can be written in just about any
language, but instead of outputting text screens, GUI screens or
generating data files, the application generates hypertext markup
language (HTML), which the web server captures and transmits to the
web browser. The full power of the Java environment is available to
the servlet.

The JSP technology works a bit differently. Instead of an application
that generates HTML for transmission to the user, a JSP document
allows developers to mix HTML and Java code within the same file
(usually ending with the .JSP suffix). Whenever the user requests that
document, the web server scans the file and executes an Java code
contained within the HTML. Special tags are used to define which
parts of the document are standard HTML and which parts are Java
code. Any output generated by the Java code is captured by the web
server and is integrated into the HTML prior to transmission to the
client.

Both technologies are popular ways to execute Java code on the web
server. In both cases, the end result is the ability to generate web
pages with dynamic content, perhaps from databases, files or even
external hardware devices.

Tomcat is often used in a 3-tier systems, where the client's web
browser communicates with the Tomcat web server, which then
communicates with database (or other types) servers. In addition,

Page: 1

some application servers include Tomcat to handle the web server side
of developing dynamic web sites.

JBoss

JBoss is a very popular open-source Java-based application server. An
application server does not deliver web pages, but instead provides a
common set of services that can be accessed and used by any type of
Java client, including both Java servlets and JSPs.

Application servers are targeted towards large projects with many
complex objects and are often used with databases quite heavily.
Most application servers can automatically handle storing records in
database tables, running multiple threads for performance and assist
with complex tasks such as handling database transactions and
connection pooling.

Finally, most application server also provide tools used to monitor the
status of the J2EE components, along with tools for configuring security
settings, clustering and more. JBoss is a full-featured and robust
application server capable of handling almost any size of project. It
includes Tomcat so you get a complete server system capable of using
both Enterprise Java Beans and web pages that use Java servlets and
JSPs.

WebSphere

WebSphere is a commercial application server from IBM. It supports
both JSP/Servlets and J2EE JavaBeans components and runs on many
different hardware/operating system combinations. While not free, a
trial version can be downloaded and installed.

In general, WebSphere is considered to be more polished and easier to
install than JBoss, as well as providing enhanced security management
options.

WebLogic

BEA's WebLogic is another very robust and popular application server
with very similar capabilities to both JBoss and WebSphere. Again,
while this is a commercial product, a free trial version is available for
download.

Other Application Servers

Page: 2

Apple's WebObjects
Borland's Enterprise Server
Macromedia's jRun Server
Novell's exteNd (Novell also recommends JBoss)
ObjectWeb's JOnAS (Free)
Oracle's Application Server
SAP AG Web Application Server
Sun Java System Application Server (Free)
Sybase EAServer (Developer's Version Free)
Tmax Soft's JEUS

Page: 3

Installing and Configuring an Application Server

JBoss Installation

NOTE: These instructions are for JBoss version 4.0.4. Other versions
may be different. Consult http://www.jboss.com for more information.

Step 1: Download and install JDK 1.5 from http://java.sun.com

Step 2: Download the JBoss 4.0.4 installer JAR at http://www.jboss.com.

Step 3: Run the following command (Windows users may be able to
double-click the file to launch it also):

java -jar jboss-4.0.4.GA-Patch1-installer.jar

Step 4: Install the application using the graphical installer.

NOTE: It is recommended that you install JBoss to a folder
without spaces in the name to avoid problems (especially for
Unix/Linux systems).

JBossIDE Installation

Since we will be working with JBoss a lot during this course, we want to
install the JBossIDE for Eclipse. This plugin automates many complex
tasks for building both Enterprise JavaBeans as well as web pages
using the JBoss server. I highly recommend downloading and install
the JBossIDE bundle, which includes Eclipse and about 10 different
plugins in addition to the JBossIDE plugin.

The JBossIDE provides the following features:

 Extensive support for XDoclet.
 Debugging and monitoring of JBoss servers.
 An easy way to configure the packaging layout of archives.
 A simple way to deploy an archive to a JBoss server.
 Several J2EE wizards to simplify J2EE development.
 Source code editors for JSP, HTML and XML.

Step 1: Download the JBossIDE bundle from
http://www.jboss.org/products/jbosside.

Page: 4

Step 2: You can use any program with the ability to extract files from
the archive such as WinZip, Power Archiver, or others. You may also
extract the files using the JAR commands shown below:

cd “\Program Files”
jar xf {download-path}/JBossIDE-1.6.0.GA-Bundle-win32.zip

NOTE: If you use the JAR command under Unix/Linux to extract
the files, some files may not get the correct property settings,
especially the executable status. Consult the online
documentation for more information about this.

Finalizing the Configuration

Now that you have installed both an application server and the
development environment, let's make sure everything is working
correctly.

You may want to create a shortcut to the Eclipse.exe program first.

Next, run the Eclipse program. I highly recommend checking for
updates at this time by visiting the Help -> Software Updates -> Find
and Install menu options.

NOTE: You may wish to download and install additional plugins, such
as the Visual Editor or C++ Development Plugin depending on which
programming languages and/or types of applications you will be
developing.

Installing the Visual Editor

While we will not be using the Visual Editor in this course, here is the
procedure needed to properly install the plugin:

1. Install Eclipse SDK 3.1.2 SDK or the JBossIDE bundle
2. Unzip into a clean directory
3. Run the eclipse.exe out of the eclipse directory and select/create a

workspace
4. Do Help->Software Updates->Find and Install...
5. Select the Search for New features to install... and hit the Next

button
6. Click on New Remote Site... button, and add this site (name it VE):

Page: 5

http://update.eclipse.org/tools/ve/updates/1.0
7. Click on New Remote Site... button, and add this site (name it EMF):

http://update.eclipse.org/tools/emf/updates
8. Click on New Remote Site... button, and add this site (name it Old

Eclipse): http://update.eclipse.org/updates/3.0
9. Select VE, EMF, and Old Eclipse, and Hit Finish
10.Select the mirrors to use as they are asked for
11.Expand the tree VE->VE->Visual Editor SDK 1.1.0.1, and hit the

checkbox on it
12.Expand EMF tree, EMF->EMF SDK 2.1.2->EMF SDK 2.1.2 and hit the

checkbox on it
13.Expand Old Eclipse->GEF 3.1.1->Graphical Editing Framework 3.1.1

and hit the check box on it
14.Hit Next, accept the licenses, hit Next, hit Finish

Page: 6

J2EE Introduction

J2EE supports a multitiered, distributed application model. Generally
this consists of at least four different application layers as shown in the
figure below:

The client computer typically uses either a custom Java-base
application or a web browser to access pages on a Java-enabled web
server.

The web pages can consist of either static HTML pages or dynamically
created pages. Dynamically generated pages consist of either
JavaServer Pages (JSP) or Java Servlets. In general, JSP is preferred
over Java Servlets, since they are easier to create. In many cases, the
Java code in the web server will make use of Java objects in the
business layer to actually carry out operations.

The business tier is where the logic of the particular business domain
resides. Requests for the client and/or web tier are sent to the
business tier, which often queries or saves data in a database server.
In many cases, the web server software runs on the same computer as
the business tier software, but this is not a requirement. This usually
provides the best overall performance however.

Finally, the Enterprise Information System tier is where the data

Page: 7

actually resides and generally consist of database servers, enterprise
resource planning (ERP), or other legacy systems such as mainframes.

As a general rule of thumb, thin-client multitiered applications are
difficult to develop because they involve many lines of intricate code to
handle transactions, state management, multithreading, resource
pooling and other low-level details. Since J2EE systems are component
based, business logic can be organized into reusable components and
the J2EE server itself will provide many of the underlying services for
the components. This usually means that developers can concentrate
on the business problems and rely on the J2EE server to handle the
other required services.

Containers and Services

J2EE components are installed into their containers during deployment.
Before any web, enterprise bean or application client component can
be executed, it must be assembled into a J2EE application and
deployed into its container.

Assembly is the process of specifying container settings for the
components as well as for the J2EE application itself. Container
settings involve specifying settings for services including security,
transaction management, Java Naming and Directory Interface (JNDI)
lookups and remote connectivity.

 The J2EE security model lets you configure a web component or
enterprise bean so resources can only be accessed by authorized
users.

 The J2EE transaction model lets you specify relationships among
methods that make up a single transaction, so all the methods in the
transaction are treated as a single unit.

 JNDI lookup services provide a unified interface the multiple naming
and directory services in the enterprise.

 The J2EE remote connectivity model manages low-level
communications between clients and enterprise beans, normally
using RMI. After the enterprise bean is created, clients invoke bean
methods as if it were in the same virtual machine, although with a
performance loss due to RMI and network overhead.

 J2EE containers also manage non-configurable services including

Page: 8

enterprise bean and servlet life cycles, database connection
resource pooling, data persistence, and access to the J2EE platform
APIs.

J2EE Platform APIs

Enterprise JavaBeans Technology – An enterprise bean is a body of
code with fields and methods that implement business logic. There
are 3 types of enterprise beans: session beans, entity beans, and
message-driven beans. Entity beans are a heavyweight solution to
access database records and often make use of object to relational
mapping (ORM) technologies, so developers can avoid writing JDBC
and SQL code. Session beans are workers that generally do not save
information for long periods of time and message-driven beans react
to messages when they are sent.

JDBC – This technology allows you to invoke SQL commands from with
Java programs. In the case of container-managed persistence, the
database operations are handled by the container automatically and
your enterprise beans may not contain any JDBC code at all. Of
course, you can still use JDBC within session beans, JSP pages or Java
Servlets if needed. However, it is considered bad design to use JDBC
inside JSP pages or Java Servlets since this increases coupling between
what are supposed to be different layers of J2EE services.

Java Servlet Technology – This allows you to build HTTP-specific
classes. They support a request-response programming model and
are typically used to extend web servers.

JavaServer Pages (JSP) Technology – JSP pages allow you to mix
both Java code and static HTML content in a text-based document.

Java Message Service (JMS) – This is a messaging standard that
allows J2EE applications to create, send, receive and read messages.
It enables loosely coupled distributed communications that are both
reliable and asynchronous. While similar in some ways to e-mail, JMS
is primarily targeted for component-to-component communications,
not human-to-human communications.

Java Transaction API (JTA) – This standard provides a standard
demarcation interface for declaring where a database transaction
begins, rolls back and commits.

JavaMail Technology – This standard provides support for sending

Page: 9

and receiving e-mail messages to/from users. It consists of two parts:
an application-level interface used by the application to actual send or
receive e-mail and a service provider interface for communicating with
the mail server.

JavaBeans Activation Framework (JAF) – This is used by the
JavaMail technology and provides services to determine the type of an
arbitrary piece of data, encapsulate access to it, discover the
operations available on it and create the appropriate JavaBean
component to perform those operations. It uses MIME data type
specifiers to create the appropriate JavaBean component that can
handle the data.

Java API for XML (JAXP) – This API supports creating and consuming
XML resources. It is often used to create reports in a platform and
programming language neutral way, which can later be translated into
other formats such as spreadsheets, HTML pages, or printed
documents such as PDF.

J2EE Connector API – This API allows system integrators and tool
vendors to create adapters that allow J2EE applications to
communicate with external enterprise information systems (EIS) such
as databases, employee resource management (ERM) systems or
other legacy applications.

Java Authentication and Authorization Service (JAAS) – Provides
a way for J2EE applications to authenticate and authorize a specific
user or group of users to run it. It is a Java-based version of the
standard Pluggable Authentication Module (PAM) framework used on
many Unix and/or Linux platforms to provide user-based security.

Container Types

The figure below shows the various containers that are used when
creating J2EE applications.

 The Enterprise JavaBeans (EJB) container manages the execution of
all enterprise beans for the J2EE application. This runs on the J2EE
server.

 A web container manages the execution of all JSP page and servlet
components for one J2EE application. This also runs on the J2EE
server.

Page: 10

 An application client container manages the execution of client
components and runs on the client machine.

 An applet container is the web browser and Java VM plug-in
combination running on the client machine.

Packaging

J2EE components must be packaged and bundled into a J2EE
application for deployment. Normally each component, along with its
related files such as GIF and HMTL files or server-side utility classes,
and a deployment descriptor (DD) and are assembled into a module
which is then added to the J2EE application.

The J2EE application and each module requires its own deployment
descriptor. A deployment descriptor is an XML document that
describes the component deployment settings, such as transaction
attributes and security requirements. Since the deployment
descriptors are declarative, they can be changed without needed to
modify the bean source code.

A J2EE application including all of its modules are then delivered in an
Enterprise Archive (EAR) file. The individual modules are first
packaged into standard Java Archive (JAR) and Web Archive (WAR) files

Page: 11

and then added to the EAR file for final deployment in the J2EE
application server.

● Each EJB JAR files contains its deployment descriptor, related files,
and the .class files for the enterprise beans themselves.

● Each application client JAR file contains its deployment descriptor,
related files, and the .class files for the application client.

● Each WAR file contains its deployment descriptor, related files, and
the .class files for the servlets or .jsp files for a JSP page.

In many situations, you can reuse existing components in different
J2EE applications by merely assembling the correct modules into the
J2EE EAR file.

Page: 12

J2EE Architectures

Goals -

• Be robust – Enterprise software is often the lifeblood of the business,
therefore the software must be bug-free and reliable.

• Be performant and scalable – Enterprise applications must meet the
expectations of the users and must be able to handle ever
increasing workloads, especially web applications, where the
expected number of users is unpredictable. In some cases,
scalability can be achieved using clustering technologies, however
this is a complex solution that requires sophisticated designs.

• Take advantage of OO design principles – Object-oriented design
principles have proven themselves valuable for complex systems.
One of the most widely used techniques is the use of design
patterns, which are recurring solutions to common problems. It is
important to implement good OO designs, instead of allowing J2EE to
dictate the design.

• Avoid unnecessary complexity – The Extreme Programming (XP)
model advocates doing “the simplest thing that could possibly
work”. Often J2EE designs are overly complex, partly because J2EE
offers so many different services and features. Developers need to
avoid complexity whenever possible to avoid adding costs to the
software life cycle.

• Be maintainable and extensible – Since maintenance is the most
expensive phase of any software project, it is important to have a
clean design with loosely coupled components. This means each
component in the system should have a clearly defined
responsibilities that do not overlap with the responsibilities assigned
to other components.

• Be delivered on time – Productivity is important, but often neglected
in J2EE designs.

• Be easy to test – Automated testing procedures are important to any
design, especially when changes are made to components. It is vital
that the changes can be tested to ensure they do not break other
the system.

Page: 13

• Promote reuse – Enterprise systems are usually a long-term projects
that may be used for many years. Reuse comes in two flavors,
object/class reuse and application server infrastructure reuse.

Secondary Goals -

• Support for multiple client types – Often developers assume that
J2EE applications allows need to support multiple J2EE-technology
clients, such as web applications, stand-alone Java GUI clients using
Swing other other windowing systems or Java applets. More and
more often however, “thin” web clients are the standard, even for
internal applications with an organization (ease of deployment is the
primary reason for this).

• Portability – You should always ask yourself how import portability is
to the project. While it is possible to write J2EE applications that
allow you to change out database engines, or move from one
application server to another, often the effort will both add cost and
delay the time it takes to develop the application. Portability should
only be important if it is a requirement of the business.

Distributed Architectures

Benefits -

• The ability to support many clients (possibly of different types) that
required a shared “middle tier” of business objects. This does not
apply to web applications, because the web container provides a
middle tier.

• The ability to deploy any application component on any physical
server. This sometimes can be used to split the work between
different servers and is most useful when dealing with very CPU
intensive calculations.

Disadvantages -

• Performance problems – Remote method invocations are many
times slower than local methods.

• Complexity – Distributed applications are hard to develop, debug,
deploy and maintain.

• Restricts using OO designs – Distributed applications often break

Page: 14

clean OO designs to reduce network activity.

In general, it is best to avoid distributed application designs unless
absolutely required.

When to use EJB

Keep in mind that EJB is only one part of the overall J2EE technology,
even though many books, web sites and developers think of it as the
core of J2EE. When your design requires distributed components that
will make use of RMI/IIOP, then EJB are a good solution with many
benefits. Primarily the EJB container will manage many complex issues
such as multiple threads, database transactions and object life cycle
for the developer.

However, all these features do come at a price. Often time EJB is used
for the wrong reasons. Use them when needed, but not until there is a
clear benefit.

EJB Considerations

The official mantra regarding EJB states “The EJB architecture will
make it easy to write applications: Application developers will not have
to understand low-level transaction and state management details,
multi-threading, connection pooling, and other complex low-level
APIs.”

While this is at least partly correct, keep in mind that using EJBs often
will add as much complexity as they solve as well as providing less
performance than carefully designed code that does make use of the
low-level APIs. In addition, developers who do not understand how the
low-level code works, risk doing either very dangerous things, or
writing very ineffective solutions.

EJB Usage Implications

• EJB makes applications harder to test – Distributed applications are
always harder to test since they make heavily use of the container
services.

• EJB applications are harder to deploy – EJBs have complex
classloader issues (making sure JAR files contain the correct Java
class files in the correct locations and that the container server
knows how to find them); complex deployment descriptors (which

Page: 15

describe components to the container server); and slower
development cycles (deploying EJB components is usually slower
than deploying web applications.

• EJB with remote interfaces may hinder using good OO design
principles – Because remote methods are much slower than local
methods, developers will often bundle multiple operations into one
method calls to reduce the number of round-trip network packets.
This can make working with an EJB-based solutions harder to
understand, maintain and develop.

• Using EJB may make simple things harder – Some simple concepts
are difficult to achieve with EJB designs (such as the Singleton
pattern). Remember EJB is a heavyweight technology, which makes
heavy work of some simple problems.

• Reduced choice of application servers – There are more web
containers available than EJB containers and web containers are
usually easier to use than EJB containers. In addition, EJB containers
often require more computer resources (CPU speed, memory, etc.)
than the simpler web containers.

Page: 16

Enterprise JavaBeans
Session, Entity and Message-Driven Beans

Introduction

Enterprise JavaBeans are components (implemented much like RMI
objects) that run inside of a server (similar to servlets) which is called
a container. They provide features that would be impossible, or
difficult, to implement on our own, including:

➢ EJBs have the ability to run on our server, or on another server,
seamlessly. This means you can create multi-tiered systems that
continue to work, even as EJBs are moved from one server to
another.

➢ The EJB container (server) can manage the mapping of objects to
database tables for you. Basically, you define the database tables
and connect objects to the tables and let the container handle
everything else, including the queries, inserts and updates. You can
override this and manage the updates yourself, if needed.

➢ Just as databases support transactions to allow for safe updates to
data, so do EJBs. This makes it possible for an update of several
components to be performed in an all-or-nothing fashion.

Just like RMI objects, EJBs consist of a "real" object on the server and a
reference on the client system. EJBs have a third role called the
container provider. The container provider is responsible for providing
a number of important services, including transaction processing,
security, object persistence, and resource pooling. The container is
strictly a server-side entity.

EJBs come in three flavors.

Entity beans are objects that map to a relational database. Each
instance of a bean is generally associated with a single row of data in a
table. The bean will have a number of variables, one for each column
in the row. We need to setup a database table to match our bean, but
the container will take of the SQL INSERT, UPDATE, DELETE and
SELECT statements for us. Most application servers also have the
ability to create the database table from the bean's information. While
this is convenient for new projects, in many cases you will have to
adapt the bean to an existing database schema.

Page: 17

Session beans are more like normal RMI objects. They perform
actions, by themselves or by working with one or more entity beans.
Session beans normally have no state of their own, which makes them
more efficient than entity beans. However, there are times when you
might want to keep some state information in a session bean. For this
reason, EJB also offers the stateful session bean, whose state is
retained between invocations.

Finally, message-driven beans react to events from other beans. They
could be used in many different ways, such as sending an order to a
remote shipping department server or triggering an automatic reorder
of supplies when the on-hand quantity drops below a specific point or
routing web based help requests to the correct technical point of
contact.

J2EE Session Beans

An example session bean

We will create a simple CalculatorBean that can add, subtract, multiply
and divide two numbers. The actual implementation is quite simple.
Since EJB are designed to be located and used from remote clients, in
a similar way to working with RMI objects, we must also build some
methods to allow clients to find our bean. This involves writing two
interfaces and one class.

The class itself will perform the work. It will be named CalculatorBean.
One of the interfaces performs the exact same functionality that our
interface for RMI objects did. It allows remote clients to connect to our
bean and invoke its methods. It will be named Calculator. The other
interface is used to find the bean, create new instances of the bean, or
destroy copies of the bean. This is called the home interface. It will be
named CalculatorHome. In addition, we will need a client, which will
be the UseCalculator class.

Before we can make the bean available for use under JBoss, we will
need two extra XML files that describe the bean to the container. The
first is called the "deployment descriptor" and is a standard part of all
EJBs. It is in the file named ejb-jar.xml. The second is named
jboss.xml and is required so JBoss can make the bean available under
its JNDI services.

Page: 18

All of the .class files and .xml files must be placed into a .jar file for use
under JBoss. While we could build this by hand, it is probably better to
automate these steps using a new "make" tool for Java called Ant. The
rules needed to build the jar file are found in the file named build.xml.

File: build.xml

<?xml version="1.0" encoding="UTF-8" ?>

<project name="Calculator Build Script" default="ejb-jar" basedir=".">

 <!-- Import the environment -->
 <property environment="env" />

 <!-- Inherit the JBoss directory name from the environment -->
 <property name="jboss.dist" value="${env.JBOSS_DIST}"/>

 <!-- In which directory are the .java source files? -->
 <property name="src.dir" value="${basedir}"/>

 <!-- Where should we perform our build? -->
 <property name="build.calculator.dir"
 value="${basedir}/build/calculator"/>

 <!-- Where should javac put compiled Java .class files -->
 <property name="build.classes.dir"
 value="${build.calculator.dir}/classes"/>

 <!-- Location of jndi.properties, describes JNDI to the client -->
 <property name="src.resources" value="${basedir}/resources"/>

 <!-- Add the JBoss jarfiles to our CLASSPATH -->
 <path id="base.classpath">
 <pathelement location="${jboss.dist}/client/jboss-j2ee.jar"/>
 <pathelement location="${jboss.dist}/client/jaas.jar"/>
 <pathelement location="${jboss.dist}/client/jbosssx-client.jar"/>
 <pathelement location="${jboss.dist}/client/jboss-client.jar"/>
 <pathelement location="${jboss.dist}/client/jnp-client.jar"/>
 </path>

 <!--
==
====== -->
 <!-- Verify that JBoss jarfiles are in our CLASSPATH -->
 <!--
==
====== -->
 <target name="validate">
 <echo message="Validating your JBOSS_DIST environment variable"/>
 <available property="classpath_id"
 value="base.classpath"

Page: 19

 file="${jboss.dist}/client/jboss-j2ee.jar" />
 </target>

 <!--
==
====== -->
 <!-- Exit with a fatal error if we didn't find the jarfile -->
 <!--
==
====== -->
 <target name="fail_if_not_valid" unless="classpath_id">
 <fail message="jboss.dist=${jboss.dist} is not a valid JBoss dist directory"/>
 </target>

 <!--
==
====== -->
 <!-- Print debugging information and set things up -->
 <!--
==
====== -->
 <target name="init" depends="validate,fail_if_not_valid">

 <echo message="JBoss configuration seems OK!"/>

 <!-- Set the CLASSPATH -->
 <property name="classpath" refid="${classpath_id}" />

 <!-- Print current values for debugging -->
 <echo message="Using JBoss directory=${jboss.dist}" />
 <echo message="Using classpath=${classpath}" />
 <echo message="Using Source directory=${src.dir}" />
 <echo message="Using Build directory=${build.dir}" />
 </target>

 <!--
==
====== -->
 <!-- Compile all of our classes, clients and EJBs -->
 <!--
==
====== -->
 <target name="compile" depends="init">
 <echo message="Compiling all of the Java source code"/>

<mkdir dir="${build.classes.dir}"/>
<javac srcdir="${src.dir}" destdir="${build.classes.dir}"
 debug="on" deprecation="on" optimize="off">
 <classpath path="${classpath}" />
 <include name="com/bamafolks/rlp/calculator/*.java" />
</javac>

 </target>

Page: 20

 <!--
==
====== -->
 <!-- Compile our classes, and create a jarfile -->
 <!--
==
====== -->
 <target name="ejb-jar" depends="compile">
 <echo message="Creating the jarfile"/>

<delete dir="${build.calculator.dir}/META-INF"/>

<mkdir dir="${build.calculator.dir}/META-INF"/>

<copy file="${src.dir}/com/bamafolks/rlp/calculator/ejb-jar.xml"
 todir="${build.calculator.dir}/META-INF" />

 <copy file="${src.dir}/com/bamafolks/rlp/calculator/jboss.xml"
 todir="${build.calculator.dir}/META-INF" />

<jar jarfile="${build.calculator.dir}/calculator.jar">
 <fileset dir="${build.classes.dir}">

<include name="com/bamafolks/rlp/calculator/Calculator.class" />
<include name="com/bamafolks/rlp/calculator/CalculatorHome.class" />
<include name="com/bamafolks/rlp/calculator/CalculatorBean.class" />

 </fileset>

 <fileset dir="${build.calculator.dir}">
<include name="META-INF/ejb-jar.xml" />
<include name="META-INF/jboss.xml" />

 </fileset>
</jar>

 </target>

 <!--
==
====== -->
 <!-- Deploy the jarfile with JBoss -->
 <!--
==
====== -->
 <target name="deploy" depends="ejb-jar">
 <copy file="${build.calculator.dir}/calculator.jar"
 todir="${jboss.dist}/deploy" />
 </target>

 <!--
==
====== -->
 <!-- Run the client from within EJB -->
 <!--
==
====== -->
 <target name="use-calculator-ejb" depends="deploy">

Page: 21

 <java classname="com/bamafolks/rlp.calculator.UseCalculator" fork="yes">
 <classpath>
 <pathelement path="${classpath}"/>
 <pathelement location="${build.classes.dir}"/>
 <pathelement location="${src.resources}"/>
 </classpath>
 </java>
 </target>

</project>

File: ejb-jar.xml

<?xml version="1.0" encoding="UTF-8"?>

<ejb-jar>
 <description>ATF Calculator Session Bean</description>
 <display-name>Calculator Session Bean</display-name>
 <enterprise-beans>
 <session>
 <ejb-name>Calculator</ejb-name>
 <home>com.bamafolks.rlp.calculator.CalculatorHome</home>
 <remote>com.bamafolks.rlp.calculator.Calculator</remote>
 <ejb-class>com.bamafolks.rlp.calculator.CalculatorBean</ejb-class>
 <session-type>Stateless</session-type>
 <transaction-type>Bean</transaction-type>
 </session>
 </enterprise-beans>
</ejb-jar>

File: jboss.xml

<?xml version="1.0" encoding="UTF-8"?>
<jboss>
 <enterprise-beans>
 <session>

 <ejb-name>Calculator</ejb-name>
 <jndi-name>calculator/Calculator</jndi-name>

 </session>
 </enterprise-beans>
</jboss>

File: Calculator.java

package com.bamafolks.rlp.calculator;

import javax.ejb.EJBObject;
import java.rmi.RemoteException;

public interface Calculator extends EJBObject {

Page: 22

public int multiply(int num1, int num2) throws RemoteException;
public int divide(int num1, int num2) throws RemoteException;
public int add(int num1, int num2) throws RemoteException;
public int subtract(int num1, int num2) throws RemoteException;

}

File: CalculatorHome.java

package com.bamafolks.rlp.calculator;

import java.io.Serializable;
import java.rmi.RemoteException;
import javax.ejb.CreateException;
import javax.ejb.EJBHome;

public interface CalculatorHome extends EJBHome {

Calculator create() throws RemoteException, CreateException;
}

File: CalculatorBean.java

package com.bamafolks.rlp.calculator;

import java.rmi.RemoteException;
import javax.ejb.SessionBean;
import javax.ejb.SessionContext;

public class CalculatorBean implements SessionBean
{

// This version of multiply() handles integers
public int multiply(int num1, int num2)
{

System.out.println("Multiply invoked with ints '" +
 num1 + "' and '" + num2 + "'.");
 return num1 * num2;

}

// This version of divide() handles integers
public int divide(int num1, int num2)
{

System.out.println("Divide invoked with ints '" +
num1 + "' and '" + num2 + "'.");

return num1 / num2;
}

// This version of add() handles integers
public int add(int num1, int num2)
{

System.out.println("Add invoked with ints '" +

Page: 23

num1 + "' and '" + num2 + "'.");
return num1 + num2;

}

// This version of subtract() handles integers
public int subtract(int num1, int num2)
{

System.out.println("Subtract invoked with ints '" +
num1 + "' and '" + num2 + "'.");

return num1 - num2;
}

// ejbCreate -- we don't need this for our session bean
public void ejbCreate() {}

// ejbRemote -- we don't need this for our session bean
public void ejbRemove() {}

// ejbActivate -- we don't need this for our session bean
public void ejbActivate() {}

// ejbActivate -- we don't need this for our session bean
public void ejbPassivate() {}

// setSessionContext -- we don't need this for our session bean
public void setSessionContext(SessionContext sc) {}

}

File: jndi.properties

java.naming.factory.initial=org.jnp.interfaces.NamingContextFactory
java.naming.provider.url=localhost:1099
java.naming.factory.url.pkgs=org.jboss.naming:org.jnp.interfaces

The EJB Client

Before a client can start working with EJB, it must get a reference to an
EJB factory, called a home interface. Once the client has the home
interface, then it can be used to create new EJB instances, lookup
existing EJB objects, or delete EJB objects. The EJB objects can be used
to access data, perform tasks, and generally get things done.

In order to locate an EJB interface, you must perform a lookup using
the JNDI interface. An EJB server publishes itself under a specific name
under a JNDI namespace.

Example Client:

package com.bamafolks.rlp.calculator;

Page: 24

import java.util.Properties;
import javax.naming.*;
import javax.rmi.PortableRemoteObject;

import com.bamafolks.rlp.calculator.Calculator;
import com.bamafolks.rlp.calculator.CalculatorHome;

class UseCalculator
{
 public static void main(String[] args)
 {

Properties prop = new Properties();
prop.put

(Context.INITIAL_CONTEXT_FACTORY,"org.jnp.interfaces.NamingContextFactory");
prop.put(Context.PROVIDER_URL,"localhost:1099");
prop.put

(InitialContext.URL_PKG_PREFIXES,"=org.jboss.naming:org.jnp.interfaces");

 try
 {
 InitialContext jndiContext = new InitialContext(prop);
 System.out.println("Got context");

try {
 // Get and display all children
 NamingEnumeration ne = jndiContext.list("");
 while(ne.hasMore()) {
 NameClassPair ncPair = (NameClassPair) ne.next();
 System.out.print("JNDI: ");
 System.out.print(ncPair.getName() + " (type ");
 System.out.println(ncPair.getClassName() + ")");
 }

} catch(Exception ex) {
System.err.println("Error processing JNDI list: " + ex.getMessage()

);
ex.printStackTrace(System.err);

}

System.out.println("Attempting to lookup calculator bean in JNDI...");

 // Get a reference to the Calculator Bean
 Object ref = jndiContext.lookup("calculator/Calculator");
 System.out.println("Got reference");

 // Get a reference from this to the Bean's Home interface
 CalculatorHome home = (CalculatorHome)
 PortableRemoteObject.narrow(ref, CalculatorHome.class);

 // Create a Calculator object from the Home interface
 Calculator calculator = home.create();

Page: 25

 // call multiply()
 System.out.println("Multiplying 2 x 3:");
 System.out.println("Answer: " + calculator.multiply(2, 3));

 // call divide()
 System.out.println("Dividing 2 x 3:");
 System.out.println("Answer: " + calculator.divide(2, 3));

// call add()
 System.out.println("Adding 2 + 3:");
 System.out.println("Answer: " + calculator.add(2, 3));

 // call subtract()
 System.out.println("Subtracing 2 - 3:");
 System.out.println("Answer: " + calculator.subtract(2, 3));
 }
 catch(Exception e)
 {
 System.out.println("Exception in UseCalculator");
 System.out.println(e.toString());
 e.printStackTrace();
 }
 }
}

Sample Entity Bean Project

See the jTunes project.

Page: 26

Java Authentication and Authorization Services

The JAAS system is designed so developers can build their own
authentication and authorization modules that can be plugged into
Java's existing security system and activated using a couple of simple
property files.

Using JAAS from client code involves working with 4 different types of
objects. There are a LoginHandler (which gathers the user's login and
password information), a LoginContext (which holds the user's
information and is used to request login/logout), one or more Principal
objects (which represents the user's account) and one or more
Credential objects (which can be used to grant permissions).

Here are the general steps programs need to perform when using
JAAS-based user authentication:

1 – Create a LoginHandler object.

2 – Create a new LoginContext object. You must pass the name
of the desired JAAS configuration to use as well as a reference to
the handler object into the constructor. The configuration details
exactly which LoginModule will be used to validate the user's
name and password.

3 – Invoke the login() method of the LoginContext object. It will
use the LoginHandler to request the user's name and
password. It will also load the specified JAAS configuration and
attempt to validate the user's information. If the login fails, a
LoginException will be thrown.

4 – Call the getSubject() method of the LoginContext object to
retrieve the user's authentication information. This will return a
reference to a Subject object that holds additional information
about the user. Primarily you will be interested in the list of
principals and credentials which are used to test for
authentication (permissions).

5 – Use the logout() method of the LoginContext object to log
the user out of the system.

Let's examine a very simple JAAS module that reads a list of user
names and passwords from a Java properties file. This module does

Page: 27

not attempt to encrypt passwords, so it should not be used in a
production environment.

Step 1 – JAAS Configuration File

First, you must create a JAAS configuration file that will activate our
custom JAAS login module. This file can be named just about anything,
but I recommend saving it as jaas.config.

Example {
com.bamafolks.jaas.SimpleLoginModule
required
debug=”false”
usernames=”joe:bill:sue”
passwords=”password1:password2:password3”;

};

This associates the name “Example” with the SimpleLoginModule class
from the com.bamafolks.jaas package. The “required” word specifies
that in order for the login to be successful, the user is required to
successfully authenticate against this module. The “debug”,
“usernames” and “passwords” lines should be self-explanatory.

Different login modules will require options unique to that module. For
example, a login module that uses a database will probably require at
least a JDBC URL while a module that authenticates against a Windows
domain will probably need the address of the domain controller and
the name of the domain itself.

JAAS is flexible enough to support several different login modules
within the same configuration. Each module can be configured as
“optional”, “requisite”, “sufficient” or “required”. The meaning of each
is shown below:

See also:

http://java.sun.com/j2se/1.4.2/docs/api/javax/security/auth/login/Config
uration.html

Required

The LoginModule is required to succeed. If it succeeds or fails,
authentication still continues to proceed down the LoginModule list.

Page: 28

Requisite

The LoginModule is required to succeed. If it succeeds, authentication
continues down the LoginModule list. If it fails, control immediately
returns to the application (authentication does not proceed down the
LoginModule list).

Sufficient

The LoginModule is not required to succeed. If it does succeed, control
immediately returns to the application (authentication does not
proceed down the LoginModule list). If it fails, authentication continues
down the LoginModule list.

Optional

The LoginModule is not required to succeed. If it succeeds or fails,
authentication still continues to proceed down the LoginModule list.

The overall authentication succeeds only if all Required and Requisite
LoginModules succeed. If a Sufficient LoginModule is configured and
succeeds, then only the Required and Requisite LoginModules prior to
that Sufficient LoginModule need to have succeeded for the overall
authentication to succeed. If no Required or Requisite LoginModules
are configured for an application, then at least one Sufficient or
Optional LoginModule must succeed.

This means you can combine different login modules in many ways to
provide additional credentials or to validate user names and
passwords against different security modules (Active Domain, LDAP,
Unix, or perhaps databases).

NOTE: You can also configure system-wide JAAS settings in the
java.security policy file (located in the {JRE}/lib/security
directory).

Step 2 – Create the SimpleLoginModule class

Since we are building our our login module, we now need to create a
class that implements the LoginModule interface.

SimpleLoginModule.java

package com.bamafolks.jaas;

Page: 29

import java.util.Iterator;
import java.util.Map;
import java.util.Vector;

import javax.security.auth.Subject;
import javax.security.auth.callback.Callback;
import javax.security.auth.callback.CallbackHandler;
import javax.security.auth.callback.NameCallback;
import javax.security.auth.callback.PasswordCallback;
import javax.security.auth.login.LoginException;
import javax.security.auth.spi.LoginModule;

public class SimpleLoginModule implements LoginModule {

// Initial state variables
CallbackHandler callbackHandler;
Subject subject;
Map sharedState;
Map options;

// List of users and passwords
String[] usernames = null;
String[] passwords = null;

// Temporary state variables
Vector tempCredentials;
Vector tempPrincipals;

// Authentication status
boolean success;

// Configurable options
boolean debug;

/**
 * Creates a simple login module that authenticates using a
 * list of usernames and passwords from the JAAS configuration.
 *
 */
public SimpleLoginModule() {

tempCredentials = new Vector();
tempPrincipals = new Vector();
success = false;
debug = false;

}

public void initialize(Subject subject,
CallbackHandler callbackHandler,
Map sharedState, Map options) {

// Store the initial state
this.callbackHandler = callbackHandler;

Page: 30

this.subject = subject;
this.sharedState = sharedState;
this.options = options;

// Scan options
if (options.containsKey("debug"))

debug = "true".equalsIgnoreCase((String) options.get("debug"));

if (options.containsKey("usernames"))
usernames = ((String) options.get("usernames")).split(":");

if (options.containsKey("passwords"))
passwords = ((String) options.get("passwords")).split(":");

if (debug) {
println("\tSimpleLoginModule: intialize");
println("\tSimpleLoginModule: usernames -");
showList(usernames);
println("\tSimpleLoginModule: passwords -");
showList(passwords);

}
}

/**
 * Verify the password against the list
 * of usernames and passwords.
 */
public boolean login() throws LoginException {

if (debug)
println("\tSimpleLoginModule: login");

if (callbackHandler == null)
throw new LoginException("Error: no CallbackHandler available "

+
"to handle getting user login information.");

if (usernames.length == 0)
throw new LoginException("Error: no usernames are registered!");

if (usernames.length != passwords.length)
throw new LoginException("Error: mismatch between number of

usernames and passwords!");

try {
NameCallback nameCB = new NameCallback("Username: ");
PasswordCallback passCB = new PasswordCallback("Password: ",

false);
Callback[] handlers = new Callback[] { nameCB, passCB };

callbackHandler.handle(handlers);

String username = nameCB.getName();

Page: 31

String password = new String(passCB.getPassword());
passCB.clearPassword();

success = validate(username, password);

nameCB = null;
passCB = null;

if (!success)
throw new LoginException("Authentication failed. Bad

username or password.");

return true;

} catch (LoginException e) {
throw e;

} catch (Exception e) {
success = false;
throw new LoginException(e.getLocalizedMessage());

}
}

@SuppressWarnings("unchecked")
public boolean commit() throws LoginException {

 if (debug)
 println("\tSimpleLoginModule: commit");

 if (success) {

 if (subject.isReadOnly()) {
 throw new LoginException ("Subject is read-only");
 }

 try {
 Iterator it = tempPrincipals.iterator();

 if (debug) {
 while (it.hasNext())
 System.out.println("\t\t[SimpleLoginModule] Principal: " + it.next().
toString());
 }

 subject.getPrincipals().addAll(tempPrincipals);
 subject.getPublicCredentials().addAll(tempCredentials);

 tempPrincipals.clear();
 tempCredentials.clear();

 return true;

 } catch (Exception e) {
 e.printStackTrace(System.out);
 throw new LoginException(e.getMessage());

Page: 32

 }
 } else {
 tempPrincipals.clear();
 tempCredentials.clear();
 return(true);
 }

}

public boolean abort() throws LoginException {

if (debug)
println("\tSimpleLoginModule: abort");

// Clear the login state
success = false;

logout();

return true;
}

public boolean logout() throws LoginException {

if (debug)
println("\tSimpleLoginModule: logout");

tempPrincipals.clear();
tempCredentials.clear();

// Remove the principals w added to the subject
Iterator it = subject.getPrincipals(SimplePrincipal.class).iterator();
while (it.hasNext()) {

SimplePrincipal p = (SimplePrincipal) it.next();
if (debug)

println("\tSimpleLoginModule: removing principle " +
p.toString());

subject.getPrincipals().remove(p);
}

// Also remove the credentials we added to the subject
it = subject.getPublicCredentials(SimpleCredential.class).iterator();
while (it.hasNext()) {

SimpleCredential c = (SimpleCredential) it.next();
if (debug)

println("\tSimpleLoginModule: removing credential " +
c.toString());

subject.getPublicCredentials().remove(c);
}

return true;
}

private boolean validate(String username, String password) {

Page: 33

SimplePrincipal p = null;
SimpleCredential c = null;

for (int i = 0; i < usernames.length; i++) {
if (usernames[i].equalsIgnoreCase(username) && passwords[i].

equals(password)) {

// Create some principals and credentials
p = new SimplePrincipal(username);
tempPrincipals.add(p);

c = new SimpleCredential();
tempCredentials.add(c);

return true;
}

}
return false;

}
private static void println(String text) {

System.out.println(text);
}

private static void showList(String[] array) {
for (String s : array) {

println("\t" + s);
}

}
}

Step 3 – The SimplePrincipal and SimpleCredential classes

The SimpleLoginModule above requires 2 additional classes named
SimplePrincipal and SimpleCredential.

SimplePrincipal.java

package com.bamafolks.jaas;

import java.io.Serializable;
import java.security.Principal;

public class SimplePrincipal implements Principal, Serializable {

private String name;

public SimplePrincipal() {
name = "";

}

public SimplePrincipal(String name) {

Page: 34

this.name = name;
}

public boolean equals(Object o) {
if (o == null)

return false;

if (this == o)
return true;

if (o instanceof SimplePrincipal) {
return ((SimplePrincipal) o).getName().equals(name);

}

return false;
}

public int hashCode() {
return name.hashCode();

}

public String toString() {
return name;

}

public String getName() {
return name;

}
}

SimpleCredential.java

package com.bamafolks.jaas;

import java.util.Properties;

public class SimpleCredential extends Properties {

public SimpleCredential() {
}

}

Step 4 – The ConsoleLoginHandler class

Next, we need another helper class that somehow gets the user's login
name and password. For this simple project, let's define one that uses
the keyboard to gather this information.

ConsoleLoginHandler.java

Page: 35

package com.bamafolks.jaas;

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;

import javax.security.auth.callback.Callback;
import javax.security.auth.callback.CallbackHandler;
import javax.security.auth.callback.NameCallback;
import javax.security.auth.callback.PasswordCallback;
import javax.security.auth.callback.UnsupportedCallbackException;

public class ConsoleLoginHandler implements CallbackHandler {

public ConsoleLoginHandler() {
}

public void handle(Callback[] callbacks) throws IOException,
UnsupportedCallbackException {

for (int i = 0; i < callbacks.length; i++) {

if (callbacks[i] instanceof NameCallback)
handle((NameCallback) callbacks[i]);

else if (callbacks[i] instanceof PasswordCallback)
handle((PasswordCallback) callbacks[i]);

else
throw new UnsupportedCallbackException(

callbacks[i], "Callback class not supported");
}

}

private void handle(NameCallback nameCB) throws IOException {
print(nameCB.getPrompt());
nameCB.setName(readLine());

}

private void handle(PasswordCallback passCB) throws IOException {
print(passCB.getPrompt());
passCB.setPassword(readLine().toCharArray());

}

private void print(String text) {
System.out.print(text);

}

private static String readLine() throws IOException {
return (new BufferedReader(new InputStreamReader(System.in))).

readLine();
}

}

Page: 36

Step 5 – Client Program

Finally, we need a test program to try out our new JAAS login module.

LoginTest.java

package com.bamafolks.jaas;

import java.security.Principal;
import java.util.Properties;
import java.util.Set;

import javax.security.auth.Subject;
import javax.security.auth.login.LoginContext;
import javax.security.auth.login.LoginException;

//
// In order to test this code, you must create a file similar to this:
//
// Example {
// SimpleLoginModule required debug="true" usernames="joe:bill:sue"
passwords="password1:password2:password3";
// }
//
// When you run the program, specify the file above like this:
//
// java -Djava.security.auth.login.config=jaas.config com.bamafolks.jaas.LoginTest

public class LoginTest {

/**
 * @param args
 */
public static void main(String[] args) {

boolean loginSuccess = false;
Subject subject = null;

try {
ConsoleLoginHandler cbh = new ConsoleLoginHandler();

LoginContext lc = new LoginContext("Example", cbh);

try {
lc.login();
loginSuccess = true;

subject = lc.getSubject();

System.out.println("Principal Names");
System.out.println("---------------");

Page: 37

Set<Principal> principals = subject.getPrincipals();
if (principals.isEmpty()) {

System.out.println("No principals defined!");
} else {

for (Principal principal : principals)
System.out.println(principal.getName());

}

// // NOTE: This also works...
// Iterator it = subject.getPrincipals().iterator();
// while (it.hasNext())
// System.out.println(it.next().toString());

System.out.println("Credentials (Groups/Permissions)");
System.out.println("--------------------------------");

Set<Object> subjectCredentials =
 subject.getPublicCredentials();

for (Object object : subjectCredentials)
System.out.println(object);

// // NOTE: Our SimpleLoginModule uses Properties object to
// // store the list of credentials, so this works also.
// Set<Properties> credentials =
/ subject.getPublicCredentials(Properties.class);
// for (Properties properties : credentials)
// properties.list(System.out);

System.out.println("Login succeeded. Logging out now.");
lc.logout();
System.out.println("You are now logged out.");

} catch (LoginException lex) {
System.out.println("Login failed!");
System.out.println(lex.getClass().getName() + ": " +

lex.getMessage());
}

} catch (Exception ex) {
System.out.println(ex.getClass().getName() + ": " +

ex.getMessage());
ex.printStackTrace();

}
System.exit(0);

}
}

After compiling all the source code, you can run the program using a
command line like this:

java -Djava.security.auth.login.config=jaas.config com.bamafolks.jaas.LoginTest

Page: 38

Default Login Modules

Sun provides several login modules that you can use out of the box for
many authentication and authorization tasks. Consult the JDK
documentation regarding the following classes (in the
com.sun.security.auth packages):

Login Modules (com.sun.security.auth.module package):

JndiLoginModule
KeyStoreLoginModule
Krb5LoginModule
NTLoginModule
UnixLoginModule

Callback Handlers (com.sun.security.auth.callback package):

DialogCallbackHandler
TextCallbackHandler

Principal Classes (com.sun.security.auth package):

NTDomainPrincipal
NTSid
NTSidDomainPrincipal
NTSidGroupPrincipal
NTSidPrimaryGroupPrincipal
NTSidUserPrincipal
NTUserPrincipal
UnixNumericGroupPrincipal
UnixNumericUserPrincipal
UnixPrincipal

See also: jaasExample2 (Unix Login) and jaasExample3 (Windows
Login)

Page: 39

Securing your J2EE Applications

You have several options when it comes time to secure your J2EE
applications. Some of the options are required to be implemented by
all application servers, however each server will probably provide its
own security mechanisms also.

Standard Security Settings

You can apply security settings to the methods of an EJB (within the
ejb-jar.xml), or to web pages (within the web.xml) for your application.
Generally, most developers will apply security settings to the web
pages, unless you are supporting remote interfaces for your beans.

First, you must define one or more security roles, which are similar to
using groups in user management situations.

Here is an example of an ejb-jar.xml file with security roles:

<ejb-jar>
 <!-- Entity and session beans go here --!>
 <assembly-descriptor>
 <security-role>
 <description>
 A role that represents everyone.
 </description>
 <role-name>everyone</role-name>
 </security-role>
 <security-role>
 <description>
 A role that represents an administrator or manager.
 </description>
 <role-name>administrator</role-name>
 </security-role>
 </assembly-descriptor>
</ejb-jar>

Next, you must assign the roles to bean methods (also in ejb-jar.xml),
like this:

 <method-permission>
 <role-name>administrator</role-name>
 <method>
 <ejb-name>ArtistBean</ejb-name>
 <method-name>create</method-name>
 </method>
 </method-permission>
 <method-permission>

Page: 40

 <role-name>everyone</role-name>
 <method>
 <ejb-name>ArtistBean</ejb-name>
 <method-name>*</method-name>
 </method>
 </method-permission>

Other options you can use are:

<unchecked/>

This grants access to call the method, not matter what role the user
has.

<run-as>
 <role-name>role</role-name>
</run-as>

Use this with a bean to force the bean to impersonate the named role
when calling other bean methods. Normally the originally caller's
security role is propagated throughout all bean methods, but this can
be used to make sure a bean can access other beans even if the
original caller does not have sufficient permission.

<exclude-list>
 <method>
 <!-- bean and method names -->
 </method
</exclude-list>

This optional attribute makes the listed method cannot be called. You
should make those method throw either a java.rmi.remoteException
(remote interface) or javax.ejb.AccessLocalException (local interfaces)
if the method is every called.

Since EJBs are often designed with only local interfaces and no remote
interfaces, the only components that can call the bean methods are
those running in the same container (JSP and servlets). In that case, it
is more efficient to assign security settings to the various web pages
instead of the beans themselves.

You can use a very similar set of settings as just described in the
web.xml file to protect web pages. Here is an example:

<web-app>
 <security-role>
 <description>

Page: 41

 Web users that can login and access the site.
 </description>
 <role-name>web-user</role-name>
 </security-role>
<security-role>
 <description>
 Administrators can access all pages on the site.
 </description>
 <role-name>administrator</role-name>
 </security-role>
 <security-constraint>
 <display-name>User Security</display-name>
 <web-resource-collection>
 <web-resource-name>jTunes Application</web-resource-name>
 <description>Security settings for user pages</description>
 <url-pattern>/app/*</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>web-user</role-name>
 </auth-constraint>
 </security-constraint>
 <security-constraint>
 <display-name>Admin Security</display-name>
 <web-resource-collection>
 <web-resource-name>jTunes Admin Pages</web-resource-name>
 <description>Security settings for admin pages</description>
 <url-pattern>/admin/*</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>administrator</role-name>
 </auth-constraint>
 </security-constraint>
 <login-config>
 <auth-method>FORM</auth-method>
 <realm-name>jTunes Login</realm-name>
 <form-login-config>
 <form-login-page>/Login.jsp</form-login-page>
 <form-error-page>/LoginError.jsp</form-error-page>
 </form-login-config>
 </login-config>
</web-app>

Here I have defined 2 groups of users (or roles), the web-user role and
the administrator role. Next, the security-constraint options along with
the nested web-resource-collection and auth-constraint sections are
used to define what role a user requires in order to access the URLs.

I have also used the login-config section to define which page is
displayed when users need to login as well as the page to show if the
login fails. The login form page should look something like this:

Page: 42

<html>
<head>
<title>Login Page</title>
</head>
<body>
<form method="POST" action="j_security_check">
 <div align="center">
 <table border="0">
 <tr><td align="right">Username:</td><td align="left"><input type="text"
name="j_username" /></td></tr>
 <tr><td align="right">Password:</td><td align="left"><input type="password"
name="j_password" /></td></tr>
 <tr><td colspan="2" align="center"><input type="submit" name="Login"
value="Login" /></td></tr>
 </table>
 </div>
</form>
</body>
</html>

Notice that the form will post itself to the j_security_check URL and
contains two fields named j_username and j_password. The
j_security_check URL is built into the application server and will
attempt to validate the user's name and password combination.

Exactly how that happens varies, but most application servers use
some form of JAAS login module to check for valid logins.

By default the JBoss server uses a very simple JAAS login module
(called the UsersRolesLoginModule) that requires you to add two
files to your .WAR file named user.properties and roles.properties.
Here are examples of what those files look like:

users.properties

joe=top-secret
admin=pa55w0rd

roles.properties

joe=web-user
admin=web-user,administrator

As you can see, the user named joe has a password of top-secret and
has the web-user role while the user named admin has a password of
pa55w0rd and has both the web-user and administrator roles.

Page: 43

This is merely the default system used by JBoss. While it is convenient
for initial testing, it is awkward to use in real projects, especially since
you have to repackage and redeploy your application again to add or
remove users.

The jboss-web.xml file can be changed to select different login
modules, such as the much more flexible DatabaseServerLoginModule.

The DatabaseServerLoginModule

This is a JAAS login module that supports authentication and role
mapping using a JDBC connection.

First you will need two tables in your database similar to this:

CREATE TABLE Principals(
PrincipalID VARCHAR(64) PRIMARY KEY,
Password VARCHAR(64)

)

INSERT INTO Principals VALUES ('test','top-secret')
INSERT INTO Principals VALUES ('randy','top-secret')

CREATE TABLE Roles (
PrincipalID VARCHAR(64),
Role VARCHAR(64),
RoleGroup VARCHAR(64)

)

INSERT INTO Roles VALUES ('test','Echo','Roles')
INSERT INTO Roles VALUES ('test','caller_test','CallerPrincipal')
INSERT INTO Roles VALUES ('randy','Java','Roles')
INSERT INTO Roles VALUES ('randy','Coder','Roles')
INSERT INTO Roles VALUES ('randy','caller_randy','CallerPrincipal')
INSERT INTO Roles VALUES ('randy','Echo','Roles')

Next, you must customize the login-config.xml file (found under
{jboss}/server/default/conf) and define a new section like this:

<application-policy name = “DatabaseUsers”>
 <authentication>
 <login-module code = “org.jboss.security.auth.spi.DatabaseServerLoginModule”
flag=”required”>
 <module-option name = “unauthenticatedIdentity”>
 guest

Page: 44

 </module-option>
 <module-option name=”dsJndiName”>
 java:/usersDS
 </module-option>
 <module-option name=”principalsQuery”>
 SELECT PASSWD FROM Principals WHERE PrincipalID = ?
 </module-option>
 <module-option name=”rolesQuery”>
 SELECT ROLEID, 'Roles' FROM Roles WHERE PrincipalID = ?
 </module-option>
 </login-module>
 </authentication>
</application-policy>

A sample Sun legacy format corresponding
DatabaseServerLoginModule configuration would be:

testDB {
org.jboss.security.auth.spi.DatabaseServerLoginModule required
dsJndiName="java:/MyDatabaseDS"
principalsQuery="SELECT PASSWD FROM JMS_USERS WHERE USERID=?"
rolesQuery="SELECT ROLEID, 'Roles' FROM JMS_ROLES WHERE USERID=?"

};

The corresponding login-config.xml format entry is:

<application-policy name = "jbossmq">
 <authentication>
 <login-module code = "org.jboss.security.auth.spi.DatabaseServerLoginModule"
 flag = "required">
 <module-option name = "unauthenticatedIdentity">guest</module-option>
 <module-option name = "dsJndiName">java:/MyDatabaseDS</module-option>
 <module-option name = "principalsQuery">SELECT PASSWD FROM JMS_USERS
WHERE USERID=?</module-option>
 <module-option name = "rolesQuery">SELECT ROLEID, 'Roles' FROM JMS_ROLES
WHERE USERID=?</module-option>
 </login-module>
 </authentication>
</application-policy>

Finally, in your jboss-web.xml file, place this:

<jboss-web>
 <security-domain>java:/jaas/DatabaseUsers</security-domain>
</jboss-web>

Page: 45

jTunes Custom Users Table

As you have seen, the UsersRolesLoginModule, which JBoss uses by
default, is not very flexible. There is no way for users to sign up for an
account dynamically using this module. Let's see if we can change our
jTunes project to use a database table of user accounts instead.

Step 1 – Create the tables

CREATE TABLE customer
(
 id INTEGER AUTO_INCREMENT PRIMARY KEY NOT NULL,
 first_name VARCHAR(50) NOT NULL,
 last_name VARCHAR(50) NOT NULL,
 email VARCHAR(100) NOT NULL UNIQUE,
 password VARCHAR(64) NOT NULL,
 expires DATETIME,
 secret VARCHAR(64),
 secret_expires DATETIME
);

CREATE TABLE roles
(
 id INTEGER AUTO_INCREMENT PRIMARY KEY NOT NULL,
 email VARACHAR(100) NOT NULL,
 roleid VARACHAR(64) NOT NULL
);

The first table will store the user's account information, while the
second will be used to associate an email address with one or more
security roles.

Step 2 – Configure JBoss

Next, edit the file named login-config.xml (in the {jboss}/
server/default/conf directory). Add the following section to the file:

<policy>
 <!-- Leave the existing sections alone -->

 <application-policy name=”MusicUsers”>
 <authentication>
 <login-module code="org.jboss.security.ClientLoginModule" flag="required">
 </login-module>
 <login-module code="org.jboss.security.auth.spi.DatabaseServerLoginModule"
 flag = "required">
 <module-option name="unauthenticatedIdentity">guest</module-option>
 <module-option name="dsJndiName">java:/musicDS</module-option>
 <module-option name="principalsQuery">

Page: 46

 SELECT password FROM customer WHERE email=?
 </module-option>
 <module-option name="rolesQuery">
 SELECT ROLEID, 'Roles' FROM roles WHERE email=?
 </module-option>
 <module-option name="hashCharset">UTF-8</module-option>
 <module-option name="hashEncoding">base64</module-option>
 <module-option name="hashAlgorithm">MD5</module-option>
 </login-module>
 </authentication>
 </application-policy>

</policy>

Here we have defined a new policy named MusicUsers that will
connect to the database via the java:/musicDS datasource. Whenever
JBoss needs to verify a password, it will run the following query:

SELECT password FROM customer WHERE email=?

JBoss will also run the following query (after the user's password is
verified) to get a list of roles (permissions) the user has:

SELECT ROLEID, 'Roles' FROM roles WHERE email=?

The hard-coded 'Roles' in the query is required by JBoss.

In addition, we have stated that passwords are not stored in the
database, but instead the database holds the results of running the
UTF-8 password string through the MD5 encryption algorithm and then
converting the result to a string using the Base64 encoder. This
means that even if someone does gain direct access to the database,
passwords will not be compromised.

List of options:

dsJndiName: The name of the DataSource of the database containing
the Principals and Roles tables.

principalsQuery: The prepared statement query, equivalent to:

"SELECT Password FROM Principals WHERE PrincipalID=?"

rolesQuery: The prepared statement query, equivalent to:

"SELECT Role, RoleGroup FROM Roles WHERE PrincipalID=?"

Page: 47

NOTE: Value of RoleGroup column always has to be 'Roles' (with
capital 'R'). This is specific to JBoss.

unauthenticatedIdentity=name, Defines the principal name that
should be assigned to requests that contain no authentication
information. This can be used to allow unprotected servlets to invoke
methods on EJBs that do not require a specific role. Such a principal
has no associated roles and so can only access either unsecured EJBs
or EJB methods that are associated with the unchecked permission
constraint.

password-stacking=useFirstPass, When password-stacking option is
set, this module first looks for a shared username and password under
the property names "javax.security.auth.login.name" and
"javax.security.auth.login.password" respectively in the login module
shared state Map. If found these are used as the principal name and
password. If not found the principal name and password are set by this
login module and stored under the property names
"javax.security.auth.login.name" and
"javax.security.auth.login.password" respectively.

hashAlgorithm=string: The name of the java.security.MessageDigest
algorithm to use to hash the password. There is no default so this
option must be specified to enable hashing. When hashAlgorithm is
specified, the clear text password obtained from the CallbackHandler
is hashed before it is passed to
UsernamePasswordLoginModule?.validatePassword as the
inputPassword argument. The expectedPassword as stored in the
users.properties file must be comparably hashed.

hashEncoding=base64|hex: The string format for the hashed pass and
must be either "base64" or "hex". Base64 is the default.

hashCharset=string: The encoding used to convert the clear text
password to a byte array. The platform default encoding is the default.

ignorePasswordCase=true|false: (3.2.3+) A boolean flag indicating if
the password comparison should ignore case. This can be useful for
hashed password encoding where the case of the hashed password is
not significant.

principalClass: (3.2.4+) An option that specifies a Principal
implementation class. This must support a ctor taking a String

Page: 48

argument for the principal name.

suspendResume: (4.0.3+) A boolean flag that specifies that any
existing JTA transaction be suspended during DB operations. The
default is "true", i.e. query the database outside the thread's current
transaction.

Next, we have to also modify the file named auth.conf (in the {jboss}/
client directory). Add the following sections to that file:

MusicUsers {
 org.jboss.security.ClientLoginModule required;
 org.jboss.security.auth.spi.DatabaseServerLoginModule required;
};

The ClientLoginModule does not actually validate users. Instead it
copies the user's information automatically whenever a bean method
is called. This is called security propagation.

Step 3 – Add security settings to the XML deployment
descriptors

Now we must inform JBoss about the new security policy and configure
which roles are required by users to access our beans and web pages.

XDoclet does not directly support many of the security features used
by JBoss, but it does allow you to create XML files that can be merged
into the deployment descriptors when you run Xdoclet. If you examine
the merge directory in the jTunes5 project, you will see I have created
3 merge files.

ejb-method-permissions.ent file:

<method-permission>
 <role-name>web-user</role-name>
 <method>
 <ejb-name>Artist</ejb-name>
 <method-name>*</method-name>
 </method>
 <method>
 <ejb-name>Album</ejb-name>
 <method-name>*</method-name>
 </method>
 <method>
 <ejb-name>Song</ejb-name>
 <method-name>*</method-name>
 </method>

Page: 49

 <method>
 <ejb-name>Customer</ejb-name>
 <method-name>*</method-name>
 </method>
</method-permission>
<method-permission>
 <role-name>administrator</role-name>
 <method>
 <ejb-name>Roles</ejb-name>
 <method-name>*</method-name>
 </method>
</method-permission>

That file holds the security settings related to our beans and will be
merged into the ejb-jar.xml file by Xdoclet.

ejb-security-role.xml file:

<security-role>
 <description>Web users that can login and access the
site.</description>
 <role-name>web-user</role-name>
</security-role>
<security-role>
 <description>Administrators can access all pages on the
site.</description>
 <role-name>administrator</role-name>
</security-role>

This file merely declares the available security role names and is
merged into the ejb-jar.xml file by XDoclet.

web-security.xml file:

<security-role>
 <description>Web users that can login and access the
site.</description>
 <role-name>web-user</role-name>
</security-role>
<security-role>
 <description>Administrators can access all pages on the
site.</description>
 <role-name>administrator</role-name>
</security-role>
<security-constraint>
 <display-name>User Security</display-name>
 <web-resource-collection>
 <web-resource-name>jTunes Application</web-resource-name>
 <description>Security settings for jTunes user pages</description>
 <url-pattern>/app/*</url-pattern>
 </web-resource-collection>

Page: 50

 <auth-constraint>
 <role-name>web-user</role-name>
 </auth-constraint>
</security-constraint>
<security-constraint>
 <display-name>Admin Security</display-name>
 <web-resource-collection>
 <web-resource-name>jTunes Admin Pages</web-resource-name>
 <description>Security settings for jTunes admin pages</description>
 <url-pattern>/admin/*</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>administrator</role-name>
 </auth-constraint>
</security-constraint>
<login-config>
 <auth-method>FORM</auth-method>
 <realm-name>jTunes Login</realm-name>
 <form-login-config>
 <form-login-page>/Login.jsp</form-login-page>
 <form-error-page>/LoginError.jsp</form-error-page>
 </form-login-config>
</login-config>

This file controls the security settings for web pages. I have restricted
all pages in the /app/* directory as requiring users to have the web-
user role in order to access the page, while pages under the /admin/*
area require the administrator role.

The login-config section tells JBoss to display the /Login.jsp file
whenever it needs to authenticate a user. That files will request the
user login with an e-mail address and password. JBoss then can load
the JAAS configuration called MusicUsers to validate the login request.

Step 4 – Telling JBoss to use the MusicUsers domain

The final step is to let JBoss know it should use our new MusicUsers
security domain instead of the default. This is easily accomplished by
bringing up the Xdoclet properties and finding the securityDomain
setting under the jboss section for the EJB. Also remember to do this
under the jbosswebxml section for the Web.

Step 5 – Build a signup page

Now that all of the security settings are in place, it is time to create a
new web page that users can use to create their own accounts. I have
created two JSP files that allow this.

Page: 51

/docroot/Signup.jsp:

<%@page import="com.bamafolks.web.*"%>
<%@ page language="java" contentType="text/html; charset=ISO-8859-1"
 pageEncoding="ISO-8859-1"%>
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">
<title>jTunes Signup</title>
</head>
<body>
<%= HtmlAssistant.getLogo() %>
<div align="center"><h2>Signup for jTunes</h2></div>
<div align="center"><h4>Complete the form to signup for a jTunes user
account</h4></div>
<div align="center">
 <form method="POST" action="/jtunes/CreateAccount.jsp">
 <table border="0">
 <tr><td align="right">*First Name:</td><td align="left"><input
type="text" name="first_name" /></td></tr>
 <tr><td align="right">*Last Name:</td><td align="left"><input
type="text" name="last_name" /></td></tr>
 <tr><td align="right">*E-mail Address:</td><td align="left"><input
type="text" name="email" /></td></tr>
 <tr><td align="right">*Password:</td><td align="left"><input
type="password" name="password1" /></td></tr>
 <tr><td align="right">*Confirm Password:</td><td align="left"><input
type="password" name="password2" /></td></tr>
 <tr><td colspan="2"> </td></tr>
 <tr><td align="center" colspan="2"><input type="submit" value="Signup"
></td></tr>
 </table>
 </form>
</div>
</body>
</html>

CreateAccount.jsp:

<%@page import="com.bamafolks.web.*"%>
<%@ page language="java" contentType="text/html; charset=ISO-8859-1"
 pageEncoding="ISO-8859-1"%>
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">
<title>jTunes User Signup</title>
</head>
<body>
<%

String firstName = request.getParameter("first_name");
String lastName = request.getParameter("last_name");

Page: 52

String email = request.getParameter("email");
String password1 = request.getParameter("password1");
String password2 = request.getParameter("password2");

if (firstName == null ||
lastName == null ||
email == null ||
password1 == null ||
password2 == null) {

%>
<h2>Error: Cannot register new account</h2>
<p>You failed to provide one or more required
values.</p>
<p>Please go back and try again.</p>
<%

} else {
if (!password1.equals(password2)) {

%>
<h2>Error: Passwords do not match</h2>
<p>You did not enter the same password twice.</
p>
<p>Please go back and try again.</p>
<%

} else {
String[] tokens = email.split("@");
if (tokens.length != 2 || tokens[0].length() == 0 ||

tokens[1].length() == 0) {
%>
<h2>Error: Bad e-mail address</h2>
<p>The e-mail address you entered does not appear to
be valid.</p>
<p>Please go back and try again.</p>
<%

} else {
if(HtmlAssistant.createNewUser(firstName,

lastName, email, password1)) {
%>
<h2>Congratulations!</h2>
<p>Your new user account is now ready to use. Please use your e-mail
address and password to login.</p>
<p>Visit the Main Page</p>
<%

} else {
%>
<h2>Error: Failed to create account</h2>
<p>The system was unable to sign you up at this time. Please try again
later.</p>
<%

}
}

}
}

%>

Page: 53

</body>
</html>

HtmlAssistant.createNewUser() method:

public static boolean createNewUser(
String firstName,
String lastName,
String email,
String password) {

boolean success = false;
Context context = null;
Connection conn = null;
PreparedStatement stmt = null;
ResultSet rs = null;

try {
context = new InitialContext();
Object o = context.lookup("java:/musicDS");
DataSource ds = (DataSource) o;

conn = ds.getConnection();
stmt = conn.prepareStatement("INSERT INTO customer (first_name,

last_name, email, password, expires) VALUES (?,?,?,?,?)");

// Encrypt password into MD5 hash using Base64

// NOTE: This required adding the commons-codec
// library from the Apache Jakarata project

MessageDigest md5 = MessageDigest.getInstance("MD5");
byte[] digest = md5.digest(password.getBytes());
String encoded = Base64.encode(digest).trim();

// Calculate an expiration of 1 year from now
java.util.Date now = new java.util.Date();
now.setYear(now.getYear() + 1);
Date expires = new Date(now.getTime());

stmt.setString(1,firstName);
stmt.setString(2,lastName);
stmt.setString(3,email);
stmt.setString(4,encoded);
stmt.setDate(5,expires);

if(stmt.executeUpdate() == 1) {
stmt.close();

// Add new user to 'web-user' role also
stmt = conn.prepareStatement("INSERT INTO roles (email,roleid)

VALUES (?,?)");

Page: 54

stmt.setString(1,email);
stmt.setString(2,"web-user");
if (stmt.executeUpdate() == 1)

success = true;
}

} catch (NamingException e) {
e.printStackTrace();

} catch (SQLException e) {
e.printStackTrace();

} catch (NoSuchAlgorithmException e) {
e.printStackTrace();

} finally {
if (rs != null)

try { rs.close(); } catch (SQLException e) { e.printStackTrace(); }
if (stmt != null)

try { stmt.close(); } catch (SQLException e) { e.printStackTrace();
}

if (conn != null)
try { conn.close(); } catch (SQLException e) { e.printStackTrace();

}
}

return success;
}

Finally, I modified the /docroot/Login.jsp as shown below:

<%@page import="com.bamafolks.web.*"%>
<%@ page language="java" contentType="text/html; charset=ISO-8859-1"
 pageEncoding="ISO-8859-1"%>
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">
<title>jTunes Login Page</title>
</head>
<body>
<%= HtmlAssistant.getLogo()%>
<form method="POST" action="j_security_check">
 <div align="center">
 <table border="0">
 <tr><th align="center" colspan="2">You must login to continue</th></
tr>
 <tr><td colspan="2"><hr></td></tr>
 <tr><td align="right">E-mail Address:</td><td align="left"><input
type="text" name="j_username" /></td></tr>
 <tr><td align="right">Password:</td><td align="left"><input
type="password" name="j_password" /></td></tr>
 <tr><td colspan="2"> </td></tr>
 <tr><td colspan="2" align="center"><input type="submit"
name="Login" value="Login" /></td></tr>

Page: 55

 </table>
 </div>
</form>
<div align="center">Create New Account
| Forgot Your Password</div>
</body>
</html>

There are still some things left to do, including adding a
LostPassword.jsp page and an Administrator page.

Page: 56

EJB Version 3.0

As you can see, EJB is not the easist environment in the world to
program. There are many places where mistakes can be made and a
lot of XML that needs to be written to describe the beans, web pages
and security settings. Many developers get frustrated when they first
learn about EJB, after the initial excitement wears off. Even with the
help of automated tools like XDoclet the job is tough.

Luckily, Sun is aware of the complexities and has decided to try and
improve the situation. The latest EJB specifications (version 3.0) are
primarily designed to make your job as a developer much easier. It
does require an EJB3 enabled server and also Java 5.

Let's build a simple EJB3 bean.

Step 1 – Install JBoss in EJB3 mode.

The default installation of JBoss does not support EJB3. Although EJB3
support can be added on, I highly recommend just installing a second
copy of JBoss so you have 2 different servers.

NOTE: You must use the JBoss installer JAR file in order to
activate an EJB3 server. During the installation process, be sure
you ask for an EJB3 container.

Step 2 – Start a new EJB project.

Using Eclipse, create a new EJB3 Project named EasyCalcEJB3. It is
useful if you already have your EJB3 version of JBoss configured and
running before you create the project.

Step 3 – Define your interface

Next, create a new interface named EasyCalc in the
com.bamafolks.ejb3 package name. Edit the file to look like this:

package com.bamafolks.ejb3;

public interface EasyCalc {

double add(double a, double b);
double subtract(double a, double b);
double multiply(double a, double b);
double divide(double a, double b);

Page: 57

}

Step 4 – Create the remote and local interfaces like this:

File: EasyCalcRemote.java

package com.bamafolks.ejb3;

import javax.ejb.Remote;

@Remote
public interface EasyCalcRemote {

}

File: EasyCalcLocal.java

package com.bamafolks.ejb3;

import javax.ejb.Local;

@Local
public interface EasyCalcLocal extends EasyCalc {

}

Step 5 – Create the bean class.

File: EasyCalcBean.java

package com.bamafolks.ejb3;

import javax.ejb.EJBException;
import javax.ejb.Stateless;

@Stateless
public class EasyCalcBean implements EasyCalcLocal, EasyCalcRemote {

public double add(double a, double b) {
return a + b;

}

public double subtract(double a, double b) {
return a - b;

}

public double multiply(double a, double b) {
return a * b;

}

Page: 58

public double divide(double a, double b) {
if (b == 0.0) {

throw new EJBException("divide by zero");
}
return a / b;

}

}

Step 6 – Package the EJB.

Use the Packaging Configurations wizard to create a standard EJB JAR
file named EasyCalcEJB.jar. Once the configuration is created, you
may remove everything except the /EasyCalcEJB3/bin/ folder. Once
you have done this, the packaging to create your JAR file.

Step 7 – Deploy the EJB.

You can right-click on the newly generated EasyCalcEJB.jar file and
deploy it to the EJB3 enabled version of JBoss. JBoss will use reflection
and some built in default to register your bean, without all the need for
the complex deployment descriptors.

Step 8 – Create a client app

Add a new class called EasyCalcEJB3Client to the
com.bamafolks.ejb3.client package as shown below:

package com.bamafolks.ejb3.client;

import javax.naming.InitialContext;
import javax.naming.NamingException;

import com.bamafolks.ejb3.EasyCalc;

public class EasyCalcEJB3Client {

/**
 * @param args
 * @throws NamingException
 */
public static void main(String[] args) throws NamingException {

InitialContext ctx = new InitialContext();
EasyCalc calculator = (EasyCalc) ctx.lookup("EasyCalcBean/remote");

System.out.println("1 + 1 = " + calculator.add(1,1));
System.out.println("2 - 1 = " + calculator.subtract(2,1));

Page: 59

}

}

The bean is automatically registered under the names
'EasyCalcBean/remote' and 'EasyCalcBean/local' within JNDI by the
EJB3 deployment package.

That was pretty easy wasn't it?

Page: 60

