
Standard Template Library Quick Reference

Containers

Containers are general-purpose template classes that are designed to store
objects of almost any type. They are useful by themselves, but become even
more powerful when combined with other concepts such as iterators and
algorithms.

Standard Containers

Name Header Description

vector<T, Alloc> <vector> or
<vector.h>

Acts very similar to a standard array that
can grow to accommodate additional
elements.

deque<T, Alloc> <deque> or
<deque.h>

This is a double-ended queue which is
efficient at adding or removing elements
from either the beginning or end of the
queue.

list<T, Alloc> <list> or <list.h> A doubly-link list container that uses
pointers to nodes. One pointer stores the
location of the next node and the second
pointer stores the location of the previous
node. Faster than the vector and deque
containers at some operations, notably
adding or removing elements from the
middle of the container.

NOTE: The Alloc parameter allows you to define your own custom memory
allocator if needed. A custom memory allocator is useful is some situations such
as when working with embedded systems which do not have general-purpose
malloc/free or new/delete operators.

Container Operation Costs

Operation C-Array vector deque list

Insert/erase at start N/A linear constant constant

Insert/erase at end N/A constant constant constant

Insert/erase in middle N/A linear linear constant

Access first element constant constant constant constant

Access last element constant constant constant constant

Access middle element constant constant constant linear

Operation C-Array vector deque list

Overhead none low medium high

Vector Advantages

– Vectors can be dynamically resized; when you run out of space it automatically
grows

– Elements of a vector can be added or removed from the interior without needing
to write custom code

– You can quickly access the start the or end of the vector, without knowing it
size in advance

– You can iterate forward or backward through a vector
– It is a simple matter to add bounds checking for both operator[] and pointer

dereferencing
– Objects in a vector can be stored in any kind of memory with the help of a

custom allocator
– Unlike standard arrays, vector have usable assignment and comparison

operators.

Vector Disadvantages

– Most implementations have to store a total of 3 memory pointers, compared to
one pointer for a standard C-style dynamically allocated array. This does use
up very much extra memory, so it is usually not a great burden.

– A vector will never release memory, even when the number of elements in the
vector is reduced.

Deque Advantages

– Since a deque acts a lot like a vector, it has the same advantages as using a
vector when compared to standard C-style arrays

– It can grow in either direction (front or back) equally well
– It is often faster than a vector when the container needs to grow to hold new

elements

Deque Disadvantages

– The operator[] is not as fast as vector's operator[], although it is still pretty fast
– Iterating over a deque is also slower than iterating over a vector

List Advantages

– Very fast element insertion/removal in the middle of the list
– Implements its own memory management system which actually can be helpful

on some platforms

List Disadvantages

– No random access iterator (which means no operator[])
– Uses extra memory to track next/previous node pointers (lists are best used for

large structure, not small data elements list a character)

General Guideline

Use a vector<> whenever possible since it has the lowest overhead and best
overall performance. However, if you are going to add and removing items from
the middle of the collection often, then consider using a list<>. Use a deque<>
whenever you will be inserting elements at the head or end most of the time, but
very seldom from the middle of the collection.

Container Adapters

The following containers are specialized containers that use one of the standard
containers to actually store the elements they manage. Basically they are
wrappers around one of the standard container templates that provide a restricted
set of operations.

Container Header Description

stack<T,
Sequence>

<stack> or <stack.h> Implements a standard LIFO (Last-
In, First-Out) container. You will
probably use the push() and pop()
members most often.

Queue<T,
Sequence>

<queue> or <queue.h> Implements a standard FIFO (First-
In, First-Out) container. This
container does not allow iteration.
You will probably use the push() and
top()/pop() members most often.

priority_queue <queue> or <stack.h> This container implements a FIFO,
with one small difference. The
largest element is always the first
item returned by the top() and pop()
methods.

Associative Containers

An associative containers stores objects based on key values.

Container Header Description

set<Key, Compare,
Alloc>

<set> or <set.h> This container holds a unique
collection of objects in sorted
sequence. The Compare
parameter defines the
function/functor to use for
comparing the objects (default is
less<Key>) and the Alloc
parameter is for a custom memory
allocator.

multiset<Key,
Compare, Alloc>

<set> or <multiset.h> This container holds a collection
of objects in sorted sequence.
Unlike a standard set<>, this type
of container allows duplicate keys.

map<Key, Data,
Compare, Alloc>

<map> or <map.h> Similar to a set<> container,
except the key is distinct from the
data being stored. Internally a
map stores pair<const Key, Data>
elements, organized by Key
values. The pair<> is a helper
template. All Key values must be
unique.

map<Key, Data,
Compare, Alloc>

<map> or <multimap.h> Works like the standard map<>
template, except duplicate Key
values are allowed.

Iterators

The standard template library makes heavy use of iterators, which basically acts
like pointers. They are used to indicate a position within a collection of elements
and are most often used to process a range of elements.

Iterator Categories

Iterator Category Description

Input Iterator This type of iterator allows you to read the element
it references. It does not allow you to change the
element.

Output Iterator This type of iterator grants permission to write an
element, but does not guarantee read access is
available (although it may allow reading the
element also.)

Forward Iterator A forward iterator generally supports both Input and
Output operations, unless the iterator is constant,
which restricts its usage to reading only. The
difference between a Forward iterator and an Input
or Output iterator is that Forward iterators can
usually be used with multi-pass algorithms.

Bidirectional Iterator This is very similar to a Forward iterator, except it
can be both incremented and decremented. Not all
of the container templates support Bidirectional
iterators.

Random Access Iterators This type of iterator supports incrementing,
decrementing and also adding and subtracting
arbitrary offsets, subscripting and more. They act
much more like traditional pointers than the other
iterators.

Concrete Iterator Template Classes

Iterator Class Description

istream_iterator<T,Distance> Reads objects of type T from an input stream
(such as cin). Stops when it reaches the end of
the stream. Used often with the copy()
algorithm.

ostream_iterator<T> Writes objects of type T to an output streams
(such as cout). Used often with the copy()
algorithm.

Iterator Class Description

reverse_iterator<RandomAcce
ssIterator, T, Reference,
Distance>

This iterator reverses the meaning of the
increment (++) and decrement (--) operators.

insert_iterator<Container> This iterator is used to insert objects into a
container. It will track of the next point of
insertion and advance automatically whenever a
new element is inserted.

front_insert_iterator<FronInsert
ionSequence>

This iterator class is an output iterator that
always inserts new elements at the front of the
container. The FrontInsertSequence means you
can only use this type of iterator with containers
that have the front(), push_front() and
pop_front() methods. Primarily this includes
the deque<> and list<> template classes.

back_insert_iterator<BackInser
tionSequence>

This iterator class is an output iterator that
always appends new elements at the end of a
container. The BackInsertionSequence means
you can only use this type of iterator with
containers that have the back(), push_back()
and pop_back() methods. Primarily this
includes the vector<>, list<> and deque<>
template classes.

Algorithms

The Standard Template Library also includes a large number of template functions
collectively referred to as algorithms. The combination of the container classes
with the algorithm template functions provides C++ with many advanced and
powerful constructs.

Algorithm Types

Algorithm Type Description

Non-mutating Algorithms in this category are used to process
and/or search a container, but never modify the
container's elements.

Mutating Algorithms in this category are used to modify
containers in some way.

Sorting There are a number of algorithms available for
sorting, searching and merging containers and their
elements.

Generalized Numeric These types of algorithms are used to perform some
kind of mathematical operation against elements in a
container.

Non-Mutating Algorithms

Remember, the non-mutating algorithms never modify the containers they are
working on.

Algorithm Description

UnaryFunction

for_each(InputIterator first,

 InputIterator last,

 UnaryFunction f)

Iterates all of the elements from
first to last and calls function f
once per element. The return
value is sometimes useful when
dealing with functors.

InputIterator

find(InputIterator first,

 InputIterator last,

 const EqualityComparable& value)

Attempts to locate value in the
elements pointed to by first and
last. The value is usually the
same type as the elements in the
container, but conversions are
performed if needed. Returns an
iterator that points to the first
match if found. Returns last if the
item cannot be found.

Algorithm Description

InputIterator

find_if(InputIterator first,

 InputIterator last,

 Predicate pred)

Similar to the find() algorithm,
except instead of comparing
values directly, it passes each
element in the range to a helper
function (or functor) that tests the
object in some way and returns a
boolean value. If the helper
function returns true, the search
stops and an iterator to the
element is returned, otherwise last
is returned.

ForwardIterator

adjacent_find(ForwardIterator first,

 ForwardIterator last)

ForwardIterator

adjacent_find(ForwardIterator first,

 ForwardIterator last,

 BinaryPredicate binary_pred)

This function iterates over the
container's elements to locate the
first of 2 iterators that are valid.
The first version is not very useful,
the second works like find_if() so
you can call a custom function (or
functor) that tests adjacent
elements and returns a boolean.

InputIterator

find_first_of(InputIterator first1,

 InputIterator last1,

 ForwardIterator first2,

 ForwardIterator last2)

InputIterator

find_first_of(InputIterator first1,

 InputIterator last1,

 ForwardIterator first2,

 ForwardIterator last2,

 BinaryPredicate comp)

Similar to using find(), except this
algorithm searches the first
sequence to find any element that
is also in a second sequence.

The second version of the function
allows you to use a custom
function (or functor) instead of the
standard operator==().

Algorithm Description

iterator_traits<InputIterator>::difference_type

count(InputIterator first,

 InputIterator last,

 const EqualityComparable& value)

void

count(InputIterator first,

 InputIterator last,

 const EqualityComparable& value,

 Size& n)

This algorithm iterators over a
sequence and counts the number
of elements that match the given
value.

The first version returns the
number of matches found, while
the second version adds the
number of matches to the value
referenced by n.

The second version is deprecated
and may be removed later.

iterator_traits<InputIterator>::difference_type

count_if(InputIterator first,

 InputIterator last,

 Predicate pred)

void

count_if(InputIterator first,

 InputIterator last,

 Predicate pred,

 Size& n)

Similar to the count() algorithm,
but instead of comparing the
elements to some value, passes
each element to a helper function
(or functor) and only counts
elements where the helper
function returns true.

The second version is deprecated
and may be removed later.

pair<InputIterator1, InputIterator2>

mismatch(InputIterator1 first1,

 InputIterator1 last1,

 InputIterator2 first2)

pair<InputIterator1, InputIterator2>

mismatch(InputIterator1 first1,

 InputIterator1 last1,

 InputIterator2 first2,

 BinaryPredicate binary_pred)

Searches the sequence
references by first1 and last1 to
find an element that does not
match the elements in first2. In
other words, finds the first
difference between 2 containers.

The second versions of the
algorithm allows you to use a
custom function (or functor) to
compare the elements in the
containers.

Algorithm Description

bool

equals(InputIterator first1,

 InputIterator last1,

 InputIterator2 first2)

bool

equals(InputIterator first1,

 InputIterator last1,

 InputIterator2 first2,

 BinaryPredicate binary_pred)

Similar to the mismatch()
algorithm, except this algorithm
simply returns true or false to
indicate whether the 2 sequences
are equal or not.

Can also be done using:

mismatch(f1,l1,f2).first == l1

ForwardIterator1

search(ForwardIterator1 first1,

 ForwardIterator1 last1,

 ForwardIterator2 first2,

 ForwardIterator2 last2)

ForwardIterator1

search(ForwardIterator1 first1,

 ForwardIterator1 last1,

 ForwardIterator2 first2,

 ForwardIterator2 last2,

 BinaryPredicate binary_pred)

These algorithms attempt to find
the sequence first2->last2
somewhere instead the sequence
first1->last1.

This works a bit like searching for
a substring within a larger string,
except of course the elements can
be of any type, not just characters.

ForwardIterator

search_n(ForwardIterator first,

 ForwardIterator last,

 Integer count,

 const T& value)

ForwardIterator

search_n(ForwardIterator first,

 ForwardIterator last,

 Integer count,

 const T& value,

 BinaryPredicate binary_pred)

Attempts to find the position in the
sequence where value is repeated
count times in a row. Useful for
testing for repeated elements.

NOTE: Using 0 for count will
always succeed, no matter the
value, since there will be no
comparisons performed.

Algorithm Description

ForwardIterator1

find_end(ForwardIterator1 first1,

 ForwardIterator1 last1,

 ForwardIterator2 first1,

 ForwardIterator2 last2)

ForwardIterator1

find_end(ForwardIterator1 first1,

 ForwardIterator1 last1,

 ForwardIterator2 first2,

 ForwardIterator2 last2,

 BinaryPredicate binary_pred)

Works similar to search().
Probably should be named
search_end().

Instead of returning the first match
in the search, this algorithm
returns an iterator that points to
the last match instead.

Mutating Algorithms

The mutating algorithms are used to make changes to containers or the elements
inside a container.

Algorithm Description

OutputIterator

copy(InputIterator first,

 InputIterator last,

 OutputIterator result)

This algorithm copies the
elements referenced by first->last
by overwriting the elements in
result.

NOTE; The output container must
be large enough to hold all the
copied elements, since this
algorithm assigns the copied
elements, it does not push them.

BidirectionalIterator2

copy_backward(BidirectionalIterator1 first,

 BidirectionalIterator1 last,

 BidirectionalIterator2 result)

Also copies the elements from
first->last into the container at
result, but copies from last to first
in backward sequence.

NOTE: result must point to the
end of the sequence, not the
beginning.

void swap(Assignable& a, Assignable& b) Assigns a to b and b to a.

Algorithm Description

void swap_iter(ForwardIterator1 a,

 ForwardIterator2 b)

Same as swap(*a, *b).

ForwardIterator2

swap_ranges(ForwardIterator1 first1,

 ForwardIterator2 last1,

 ForwardIterator2 first2)

Swaps all the elements pointed to
by first1->last1 with the elements
pointed to by first2.

OutputIterator

transform(InputIterator first,

 InputIterator last,

 OutputIterator result,

 UnaryFunction op)

OutputIterator

transform(InputIterator1 first1,

 InputIterator1 last1,

 InputIterator1 first2,

 OutputIterator result,

 BinaryFunction binary_op)

This is similar to the copy()
algorithm, except before the
elements are copied into the new
container, a helper function (or
functor) is called that can change
(transform) the elements in some
way.

The second version allows you to
do that same thing, except in this
case you are extracting elements
from 2 different containers and
combining them into one result
container, by calling a helper
function that receives one
element from each input
container.

void

replace(ForwardIterator first,

 ForwardIterator last,

 const T& old_value,

 const T& new_value)

Replaces every element with
value old_value, with the value
new_value in the sequence first-
>last.

void

replace_if(ForwardIterator first,

 ForwardIterator last,

 Predicate pred,

 const T& new_value)

Similar to replace(), except
instead of comparing each input
element against a value, calls a
helper function (or functor). If the
helper function returns true, the
element will be replaced by
new_value.

Algorithm Description

void

replace_copy(InputIterator first,

 InputIterator last,

 OutputIterator result,

 const T& old_value,

 const T& new_value)

Copies all the elements into a
new container, but replaces any
elements with old_value with
new_value if found during the
copy process.

void

replace_copy_if(InputIterator first,

 InputIterator last,

 OutputIterator result,

 Predicate pred,

 const T& new_value)

Works like replace_copy(),
except only replaces elements
with new_value if the helper
function (or functor) returns true.

void

fill(ForwardIterator first,

 ForwardIterator last,

 const T& value)

Use this algorithm to quickly
assign value to the elements
referenced by first->last.

OutputIterator

fill_n(OutputIterator first,

 Size n,

 const T& value)

This algorithm also assigns value
to the elements referenced by
first. It does this n times.

void

generate(ForwardIterator first,

 ForwardIterator last,

 Generator gen)

This algorithm calls the helper
function (or functor) gen and
stores the results in each
element referenced by first->last.

void

generate_n(OutputIterator first,

 Size n,

 Generator gen)

Calls the helper function (or
functor) gen and assigns the
results to the iterator first, exactly
n times.

Algorithm Description

ForwardIterator

remove(ForwardIterator first,

 ForwardIterator last,

 const T& value)

Removes all elements with value
from the sequence referenced by
first->last.

ForwardIterator

remove_if(ForwardIterator first,

 ForwardIterator last,

 Predicate pred)

Same as remove(), except calls
the helper function (or functor)
pred to determine whether or not
to remove the item. The helper
function returns true when the
element should be removed.

OutputIterator

remove_copy(InputIterator first,

 InputIterator last,

 OutputIterator result,

 const T& value)

Copies elements in first->last to
result if they do not equal value.

OutputIterator

remove_copy_if(InputIterator first,

 InputIterator last,

 OuputIterator result,

 Predicate pred)

Calls the helper function (or
functor) pred for each element in
first->last and copies the element
to result if pred returns false. In
other words, true elements are
not copied.

ForwardIterator

unique(ForwardIterator first,

 ForwardIterator last)

ForwardIterator

unique(ForwardIterator first,

 ForwardIterator last,

 BinaryPredicate binary_pred)

Removes duplicate elements
from the sequence first->last so
when completed, only unique
elements remain. The second
flavor uses a helper function (or
functor) to decide if elements are
unique or not.

Algorithm Description

OutputIterator

unique_copy(InputIterator first,

 InputIterator last,

 OutputIterator result)

OutputIterator

unique_copy(InputIterator first,

 InputIterator last,

 OutputIterator result,

 BinaryPredicate binary_pred)

Copies only unique elements
(skips consecutive duplicates)
from first->last into result. Works
best when the input container is
sorted.

void

reverse(BidirectionalIterator first,

 BidirectionalIterator last)

Reverses a container so the last
element becomes the first and
the first element becomes the
last and so on.

OutputIterator

reverse_copy(BidirectionalIterator first,

 BidirectionalIterator last,

 OutputIterator result)

Copies elements first->last into
container result, in reverse
sequence.

ForwardIterator

rotate(ForwardIterator first,

 ForwardIterator last,

 ForwardIterator middle)

Rearranges the container so
middle becomes first and last
becomes middle. This means
first also becomes middle+1.
Acts like rotating a circle.

OutputIterator

rotate_copy(ForwardIterator first,

 ForwardIterator middle,

 ForwardIterator last,

 OutputIterator result)

Works like rotate(), except
copies the rotated elements into
result. Faster then doing a copy
() followed by a rotate().

void

random_shuffle(RandomAccessIterator first,

 RandomAccessIterator last)

void

random_shuffle(RandomAccessIterator first,

 RandomAccessIterator last,

 RandomNumberGenerator& rand)

Randomly rearranges all the
elements in first->last. The
second version allows you to use
a custom random number
generator functor.

Algorithm Description

RandomAccessIterator

random_sample(InputIterator first,

 InputIterator last,

 RandomAccessIterator ofirst,

 RandomAccessIterator olast)

RandomAccessIterator

random_sample(InputIterator first,

 InputIterator last,

 RandomAccessIterator ofirst,

 RandomAccessIterator olast,

 RandomNumberGenerator& rand)

Works like the random_shuffle()
algorithm, except instead of
rearranging the input container,
copies the elements randomly
into another container. Each
input element will only appear
once in the output, in random
sequence.

 Again a custom random number
generator can be used if needed.

OutputIterator

random_sample_n(ForwardIterator first,

 ForwardIterator last,

 OutputIterator out,

 Distance n)

OutputIterator

random_sample_n(ForwardIterator first,

 ForwardIterator last,

 OutputIterator out,

 Distance n,

 RandomNumberGenerator& rand)

Similar to random_sample(),
except this algorithm stops after
copying n elements. This
algorithm preserves the relative
order of the copied elements.

ForwardIterator

partition(ForwardIterator first,

 ForwardIterator last,

 Predicate pred)

This algorithm rearranges the
elements in first->last by calling
the helper function (or functor)
pred against each element. All
elements where pred returns true
are placed before the elements
that return false. The returned
iterator will point to the middle.
(i.e. The first false element.)

Algorithm Description

ForwardIterator

stable_partition(ForwardIterator first,

 ForwardIterator last,

 Predicate pred)

Same as partition(), except the
elements will maintain their
relative order within the
sequence.

Sorting Algorithms

This group of algorithm are used to fully or partially sort the elements in a
container.

Algorithm Description

void

sort(RandomAccessIterator first,

 RandomAccessIterator last)

void

sort(RandomAccessIterator first,

 RandomAccessIterator last,

 Compare comp)

Rearranges the container so the
elements are in sorted sequence.
By default, it uses operator<() to
compare elements.

The second version allows you to
use a helper function (or function)
to get custom sort sequences.

void

stable_sort(RandomAccessIterator first,

 RandomAccessIterator last)

void

stable_sort(RandomAccessIterator first,

 RandomAccessIterator last,

 Compare comp)

Also sorts elements in a
container, but unlike the standard
sort(), this one preserves the
relative order of duplicate
elements. This means that
stable_sort() is less efficient
than standard sort().

Algorithm Description

void

partial_sort(RandomAccessIterator first,

 RandomAccessIterator middle,

 RandomAccessIterator last)

void

partial_sort(RandomAccessIterator first,

 RandomAccessIterator middle,

 RandomAccessIterator last,

 Compare comp)

This algorithm also sorts
elements in containers, but in this
case only elements from first-
>middle are sorted and placed at
the beginning of the container.
The elements from middle->last
are unsorted (and probably
rearranged).

RandomAccessIterator

partial_sort_copy(InputIterator first,

 InputIterator last,

 RandomAccessIterator result_first,

 RandomAccessIterator result_last)

RandomAccessIterator

partial_sort_copy(InputIterator first,

 InputIterator last,

 RandomAccessIterator result_first,

 RandomAccessIterator result_last,

 Compare comp)

This algorithm combines partial
sorting with copying of the
elements. It will stop whenever it
processes (last-first) or
(result_last-result_first) elements,
whichever is smaller.

Useful for extracting X number of
items (perhaps the smallest or
largest values) from a large
container into a smaller one.

bool

is_sorted(ForwardIterator first,

 ForwardIterator last)

bool

is_sorted(ForwardIterator first,

 ForwardIterator last,

 Compare comp)

Returns true if the range is
already sorted, false otherwise.

Algorithm Description

void

nth_element(RandomAccessIterator first,

 RanomAccessIterator nth,

 RandomAccessIterator last)

void

nth_element(RandomAccessIterator first,

 RandomAccessIterator nth,

 RandomAccessIterator last,

 Compare comp)

This is a special kind of partial
sort that ensures elements to the
left of nth are less than all
elements to the right of nth. The
left side may or may not be
sorted. The same applies to the
right side. However, all items to
the left will be less than the items
to the right, with nth used as a
split point.

Searching Algorithms

Algorithm Description

ForwardIterator

lower_bound(ForwardIterator first,

 ForwardIterator last,

 const T& value)

ForwardIterator

lower_bound(ForwardIterator first,

 ForwardIterator last,

 const T& value,

 Compare comp)

This algorithm performs a fast
binary search of a sorted
container and returns the iterator
where a new element of value
can be inserted to maintain the
proper order of elements.

Uses operator<() by default, but
the second version can be used
to customize the comparison.

NOTE: The first version requires
value to be comparable with a T.

ForwardIterator

upper_bound(ForwardIterator first,

 ForwardIterator last,

 const T& value)

ForwardIterator

upper_bound(ForwardIterator first,

 ForwardIterator last,

 const T& value,

 Compare comp)

This algorithm also performs a
fast binary search of a sorted
container. The difference is in the
returned iterator. This one
returns a reference to the first
element greater than value.

By comparison the lower_bound
() algorithm returns a reference to
the first element greater than or
equal to value.

Algorithm Description

pair<ForwardIterator, ForwardIterator>

equal_range(ForwardIterator first,

 ForwardIterator last,

 const T& value)

pair<ForwardIterator, ForwardIterator>

equal_range(ForwardIterator first,

 ForwardIterator last,

 const T& value,

 Compare comp)

Combines using lower_bound()
and upper_bound() into a single
algorithm that returns both
iterators in a single function call.

NOTE: The first version only
requires that value be
comparable to elements of type
T.

bool

binary_search(ForwardIterator first,

 ForwardIterator last,

 const T& value)

bool

binary_search(ForwardIterator first,

 ForwardIterator last,

 const T& value,

 Compare comp)

Compares each element in first-
>last against value using either
the default comparison operator
or a custom comparison function
(or functor) comp and returns
true if found, false otherwise.

NOTE: Since you will often need
to know the position of the
element, most of the time you
should consider using
lower_bound(), upper_bound(),
or equal_range() instead.

Merging Algorithms

There are a couple of algorithms you can use for combining and merging sorted
containers together.

Algorithm Description

OutputIterator

merge(InputIterator1 first1,

 InputIterator1 last1,

 InputIterator2 first2,

 InputIterator2 last2,

 OutputIterator result)

OutputIterator

merge(InputIterator1 first1,

 InputIterator1 last1,

 InputIterator2 first2,

 InputIterator2 last2,

 OutputIterator result,

 Compare comp)

Combines 2 sorted containers
(first1->last1 and first2->last2)
into another container (result) so
that the output container is also
sorted. The merge is stable,
which means the relative order of
duplicate elements is preserved.

void

inplace_merge(BidirectionalIterator first,

 BidirectionalIterator middle,

 BidirectionalIterator last)

void

inplace_merge(BidirectionalIterator first,

 BidirectionalIterator middle,

 BidirectionalIterator last,

 Compare comp)

This algorithm takes a container
that has been partially sorted
(split around middle) and
completes the sort so the entire
container is now sorted.

Set Algorithms

There are also a set of algorithms designed specifically for performing set
operations. Most of these algorithms do not require a set<> container, but they
may be used to implement the set<> template class.

Algorithm Description

bool

includes(InputIterator1 first1,

 InputIterator1 last1,

 InputIterator2 first2,

 InputIterator2 last2)

bool

includes(InputIterator1 first1,

 InputIterator1 last1,

 InputIterator2 first2,

 InputIterator2 last2,

 Compare comp)

Tests 2 sorted ranges to
determine if all of the elements in
first2->last2 are also found in
first1->last1. Returns true only if
all of the elements in the second
container can be found in the first
container.

Both input containers must be
sorted for this algorithm to work
properly.

OutputIterator

set_union(InputIterator1 first1,

 InputIterator1 last1,

 InputIterator2 first2,

 InputIterator2 last2,

 OutputIterator result)

OutputIterator

set_union(InputIterator1 first1,

 InputIterator1 last1,

 InputIterator2 first2,

 InputIterator2 last2,

 OutputIterator result,

 Compare comp)

Copies all the sorted elements
that are in either first1->last1 or
first2->last2 into a new container
(result), while preserving the sort
sequence.

Both input containers must be
sorted for this algorithm to work
properly.

NOTE: If the same value
elements appear in both
containers, then this algorithm
copies the elements from the
container where the value is
repeated the most often.

Algorithm Description

OutputIterator

set_intersection(InputIterator1 first1,

 InputIterator1 last1,

 InputIterator2 first2,

 InputIterator2 last2,

 OutputIterator result)

OutputIterator

set_intersect(InputIterator1 first1,

 InputIterator1 last1,

 InputIterator2 first2,

 InputIterator2 last2,

 OutputIterator result,

 Compare comp)

Copies all the sorted elements
that are found in both first1-
>last1 and first2->last2 into a
new container (result), while
preserving the sort sequence.

Both input containers must be
sorted for this algorithm to work
properly.

NOTE: If the same value
elements appear in both
containers, then this algorithm
copies the elements from the
container where the value is
repeated the least often.

OutputIterator

set_difference(InputIterator1 first1,

 InputIterator1 last1,

 InputIterator2 first2,

 InputIterator2 last2,

 OutputIterator result)

OutputIterator

set_difference(InputIterator1 first1,

 InputIterator1 last1,

 InputIterator2 first2,

 InputIterator2 last2,

 OutputIterator result,

 Compare comp)

Copies all the sorted elements
that are in first1->last1 but are
not in first2->last2 into a new
container (result), preserving the
sort sequence.

Both input containers must be
sorted for this algorithm to work
properly.

Algorithm Description

OutputIterator

set_symmetric_difference(

 InputIterator1 first1,

 InputIterator1 last1,

 InputIterator2 first2,

 InputIterator2 last2,

 OutputIterator result)

OutputIterator

set_symmetric_difference(

 InputIterator1 first1,

 InputIterator1 last1,

 InputIterator2 first2,

 InputIterator2 last2,

 OutputIterator result,

 Compare comp)

Copies all the sorted elements
that are in first1->last1 but not in
first2->last2 as well as all the
element in first2->last2 that are
not in first1->last1 into a new
container (result), preserving the
sort sequence. After using this
algorithm the output container will
have the set of elements that are
not found in both input
containers.

Both input containers must be
sorted for this algorithm to work
properly.

Heap Operations

A heap is data structure similar to a tree, but normally stores its elements as an
array (including vector and deque). The difference is that in a heap not every
element has to be perfectly sorted. Instead the elements have to arranged so the
highest value is always above the lower values. This is used by the
priority_queue<> template internally to arrange elements by value.

Algorithm Description

Void

make_heap(RandomAccessIterator first,

 RandomAccessIterator last)

void

make_heap(RandomAccessIterator first,

 RandomAccessIterator last,

 Compare comp)

Turns the container first->last into a
heap. Typically the underlying
container will be a C-style array,
vector<> or deque<> object.

Algorithm Description

void

push_heap(RandomAccessIterator first,

 RandomAccessIterator last)

void

push_heap(RandomAccessIterator first,

 RandomAccessIterator last,

 Compare comp)

This function moves an element
that has already been added to the
end of a container into its proper
location within the heap structure.
You must add the element to the
underlying container yourself,
perhaps by using the push_back()
function.

void

pop_heap(RandomAccessIterator first,

 RandomAccessIterator last)

void

pop_heap(RandomAccessIterator first,

 RandomAccessIterator last,

 Compare comp)

This method removes the largest
element from the heap structure
(the largest element is normally the
first element). It does not actually
remove the element, but instead
moves it to the end of the
underlying container and
reorganizes the remaining
elements so the heap is still valid.

void

sort_heap(RandomAccessIterator first,

 RandomAccessIterator last)

void

sort_heap(RandomAccessIterator first,

 RandomAccessIterator last,

 Compare comp)

Returns the heap's underlying
heap sequence back into a sorted
sequence. The relative order of
the elements is not guaranteed to
be preserved.

bool

is_heap(RandomAccessIterator first,

 RandomAccessIterator last)

bool

is_heap(RandomAccessIterator first,

 RandomAccessIterator last,

 Compare comp)

Tests a container to determine if it
is already organized into the
sequence needed to be treated as
a heap structure.

Miscellaneous Algorithms

Here are several general-purpose algorithms.

Algorithm Description

const T&

min(const T& a,

 const T& b)

const T&

min(const T& a,

 const T& b,

 Compare comp)

Compares a to b and returns the
one with the lesser value (returns a
if they are equal). Uses operator<
by default.

const T&

max(const T& a,

 const T& b)

const T&

max(const T& a,

 const T& b,

 Compare comp)

Compares a to b and returns the
one with the greater value (returns
a if they are equal). Uses
operator< by default.

ForwardIterator

min_element(ForwardIterator first,

 ForwardIterator1 last)

ForwardIterator

min_element(ForwardIterator first,

 ForwardIterator last,

 Compare comp)

Finds the smallest element in the
container and returns an iterator
that references that element.

ForwardIterator

max_element(ForwardIterator first,

 ForwardIterator1 last)

ForwardIterator

max_element(ForwardIterator first,

 ForwardIterator last,

 Compare comp)

Finds the largest element in the
container and returns an iterator
that references that element.

Algorithm Description

bool

lexicographical_compare(

 InputIterator1 first1,

 InputIterator1 last1,

 InputIterator2 first2,

 InputIterator2 last2)

bool

lexicographical_compare(

 InputIterator1 first1,

 InputIterator1 last1,

 InputIterator2 first2,

 InputIterator2 last2,

 Compare comp)

While this algorithm's name is
awkward, the job it performs is
simple. It compares elements one
by one from both containers until it
either reaches the end or finds
elements that do not match. If both
containers stored exactly the same
elements in the same sequence, it
returns true, otherwise it returns
false.

bool

next_permutation(BidirectionalIterator first,

 BidirectionalIterator last)

bool

next_permutation(BidirectionalIterator first,

 BidirectionalIterator last,

 Compare comp)

This algorithm is used to rearrange
the elements in a sorted container
in every other possible sequence
(or permutation). Every time you
call this algorithm, the elements will
be reordered and it will return true.
Once all the permutations have
been generated, the elements are
returned to the original sorted
sequence and false is returned.

bool

prev_permutation(BidirectionalIterator first,

 BidirectionalIterator last)

bool

prev_permutation(BidirectionalIterator first,

 BidirectionalIterator last,

 Compare comp)

This algorithm is the mirror image
of next_permutation().

Algorithm Description

T

accumulate(InputIterator first,

 InputIterator last,

 T init)

T

accumulate(InputIterator first,

 InputIterator last,

 T init,

 BinaryFunction binary_op)

Adds all the elements from first-
>last to init and returns the sum.

The second version allows you to
use a function (or functor) that will
be called with the previous result
(initially the same as init) and the
next element in the container. The
function will return a value of type T
that will be added to the next
result.

NOTE: Defined in the header
<numeric>.

T

inner_product(InputIterator1 first1,

 InputIterator1 last1,

 InputIterator2 first2,

 T init)

T

inner_product(InputIterator1 first1,

 InputIterator1 last1,

 InputIterator2 first1,

 T init,

 BinaryFunction1 binary_op1,

 BinaryFunction2 binary_op2)

This algorithm takes each element
in the first container (first1->last1)
and multiplies it by each
corresponding element in the
second container (first2) and
returns the sum of all of the results
+ the value in init. Think of it as a
crude matrix multiply and add
operation.

NOTE: Defined in the header
<numeric>.

OutputIterator

partial_sum(InputIterator first,

 InputIterator last,

 OutputIterator result)

OutputIterator

partial_sum(InputIterator first,

 InputIterator last,

 OutputIterator result,

 BinaryOperator binary_op)

This algorithm visits each element
in a container and adds the
element's value to the next
element's value and stores the
result in the output container. The
first element is always just copied
to the output.

Output[0] = Input[0]

Output[i] = Input[i-1] + Input[i]

Algorithm Description

OutputIterator

adjacent_difference(InputIterator first,

 InputIterator last,

 OutputIterator result)

OutputIterator

adjacent_difference(InputIterator first,

 InputIterator last,

 OutputIterator result)

Copies the first element from first
to result. Next, subtracts all
elements from the previous
element and stores the result in
result.

Output[0] = Input[0]

Output[i] = Input[i] – Input[i-1]

Function Objects (aka Functors)

A function object or functor is any object that can be used as if it were a plain old
function. A class can used as a functor if it defines operator(), which is
sometimes referred to as the default operator. So a functor is really either a
pointer to a static function, or a pointer to an object that defines operator(). The
advantages of using a function object should become apparent soon.

Many of the algorithms in the Standard Template Library will accept a functor to
use instead of the default functor defined by the template class. This allows the
user of the algorithm to adapt the algorithm to their specific needs. You can use
the predefined function objects that are included with the STL, or you can roll your
own as long as your functors have the required function signatures.

There are 3 major types of function objects and several other less commonly used
function objects.

Major Functor Types

Functor Type Used By Description

Predicate (Unary
or Binary)

Unary: remove_if, find_if,
count_if, replace_if,
replace_copy_if, remove_if, and
remove_copy_if

Binary: adjacent_find,
find_first_of, mismatch, equal,
search, search_n, find_end,
unique, and unique_copy

A predicate function object
returns a bool value of true
or false. Generally they will
receive one argument of
type T, but some algorithms
will require a binary
predicate function which
takes in two arguments of
type T and returns a bool.

Comparison
Functions

sort, stable_sort, partial_sort,
partial_sort_copy, is_sorted,
nth_element, lower_bound,
upper_bound, equal_range,
binary_search, merge,
inplace_merge, includes,
set_union, set_intersection,
set_difference,
set_symmetric_difference,
make_heap, push_heap,
pop_heap, sort_heap, is_heap,
min, max, min_element,
max_element,
lexicographical_compare,
next_permutation and
prev_permutation

This kind of function object
takes two arguments of type
T and return true or false
after the items have been
compared. The operator<
is an example of this kind of
function and is generally the
default used when you do
not supply your own
function object.

Functor Type Used By Description

Numeric
Functions (Unary
or Binary)

Unary: for_each and transform

Binary: transform, accumulate,
and inner_product

This kind of function will
generally accept either one
or two arguments of type T
and returns the results of
some sort of mathematical
operation. The accumulate
algorithm uses operator+
as its default numeric
function.

Here is an example of an algorithm that uses a function.

#include <iostream>
#include <iterator>
#include <vector>
#include <algorithm>

using namespace std;

bool failingGrade(int score)
{

return score < 70;
}

int main(int argc, char *argv[])
{

vector<int> scores;

scores.push_back(69);
scores.push_back(70);
scores.push_back(85);
scores.push_back(80);

cout << “Scores Before: “ << endl;
copy(scores.begin(), scores.end(), ostream_iterator<int>(cout,

“\n”));

vector<int>::iterator new_end;

new_end = remove_if(scores.begin(), scores.end(), failingGrade);
scores.remove(new_end, scores.end());

cout << “Scores After: “ << endl
copy(scores.begin(), scores.end(), ostream_iterator<int>(cout,

“\n”));

return 0;
}

The only problem with this example is that the failingGrade function is not very
flexible. It uses a hard-coded cutoff of 70.

Here is a better version that uses a function object (object of a class with an
operator() defined).

#include <iostream>
#include <iterator>
#include <vector>
#include <algorithm>

using namespace std;

class Failing
{
private:
 int cutoff;
public:
 Failing(int below) : cutoff(below) {}
 bool operator()(int score)
 {
 return score < cutoff;
 }
};

int main(int argc, char *argv[])
{

vector<int> scores;

scores.push_back(69);
scores.push_back(70);
scores.push_back(85);
scores.push_back(80);

cout << "Scores Before: " << endl;
copy(scores.begin(), scores.end(), ostream_iterator<int>(cout,

"\n"));

vector<int>::iterator new_end;
new_end = remove_if(scores.begin(), scores.end(), Failing(75));
scores.erase(new_end, scores.end());

cout << "Scores After: " << endl;
copy(scores.begin(), scores.end(), ostream_iterator<int>(cout,

"\n"));

return 0;
}

This can also be achieved using a class template instead as follows:

#include <iostream>
#include <iterator>
#include <vector>
#include <algorithm>

using namespace std;

template <typename T>

class Failing
{
private:
 T cutoff;
public:
 Failing(T below) : cutoff(below) {}
 bool operator()(T const& score)
 {
 return score < cutoff;
 }
};

int main(int argc, char *argv[])
{

vector<int> scores;

scores.push_back(69);
scores.push_back(70);
scores.push_back(85);
scores.push_back(80);

cout << "Scores Before: " << endl;
copy(scores.begin(), scores.end(), ostream_iterator<int>(cout,

"\n"));

vector<int>::iterator new_end;
new_end = remove_if(scores.begin(), scores.end(), Failing<int>

(81));
scores.erase(new_end, scores.end());

cout << "Scores After: " << endl;
copy(scores.begin(), scores.end(), ostream_iterator<int>(cout,

"\n"));

return 0;
}

Predefined Function Objects

Since using function objects with algorithms is so common, a number of
predefined function objects are available for you to use in your code.

Arithmetic Function Objects

Functor Type Description

plus<T> Binary Adds two elements together to calculate a
sum.

minus<T> Binary Subtracts two elements to calculate the
difference.

multiplies<T>*

* times<T> in older
versions of STL

Binary Multiples two elements to calculate a
product.

divides<T> Binary Divides one element by another to calculate
a dividend.

modulus<T> Binary Performs a modulo operation against two
elements and calculates the remainder.

negate<T> Unary Negates the element so positive values
become negative and vice-versa.

Comparison Function Objects

Functor Type Description

equal_to<T> Binary Compares two elements for equality using
operator==.

not_equal_to<T> Binary Compares two elements for inequality using
operator==.

less<T> Binary Compares two elements using operator<.

greater<T> Binary Compares two elements using operator>.

less_equal<T> Binary Compares two elements using operator<=.

greater_equal<T> Binary Compares two elements using operator>=.

Logical Function Objects

Functor Type Description

logical_and<T> Binary Performs an AND operation with two other
conditions.

Functor Type Description

logical_or<T> Binary Performs an OR operation with two other
conditions.

logical_not<T> Unary Inverts boolean logic.

Function Object Adapters

Alas the function objects listed above are quite useful, but limited in scope. There
is no apparent way you can use functors like less<T> with any algorithm that
requires a unary function, or is there?

This is the concept of a Function Object Adapter. They can be used to convert
binary functors into unary functors or to do other conversions such as converting a
plain function into a function object or converting a class member function back
into a standard function so it can be used with the algorithms.

Adapter Description Notes

binder1st Adapts a unary
function/functor and a
constant into a binary
functor, where the constant
will be used as the first
argument to the functor.

Don't use directly. Instead
use the bind1st() function,
which creates a binder1st
object internally.

binder2nd Adapts a unary
function/functor and a
constant into a binary
functor, where the constant
will be used as the second
argument to the functor.

Don't use directly. Instead,
use the bind2nd() function,
which creates a binder2nd
object internally.

ptr_fun Converts a pointer to a
standard function into a
function object. Needed
when trying to customize
the container templates
(such as set<>) which
require a functor class and
do not support function
objects.

Can be used to convert both
unary and binary functions
into function objects.

unary_negate Converts a unary predicate
function object by inverting
the logical return value.

Don't use directly. Use the
not1() function instead.

binary_negate Converts a binary predicate
function object by inverting
the logical return value.

Don't use directly. Use the
not2() helper function
instead.

Adapter Description Notes

unary_compose Combines multiple function
objects into a single object
by calling the first function
and passing the results to
the next function. In other
words, allows you to chain
function calls together.

Don't use directly. Use the
compose1() helper function
instead.

binary_compose Combines multiple function
objects into a single object
in the same manner as
unary_compose, except
works on binary functions.

Don't use directly. Use the
compose2() helper function
instead.

mem_fun Converts a member
function of a class (or
struct) into a plain function
so it can be used with
algorithms. It performs
opposite from the same
way ptr_fun() does.

Use this helper function
when you are storing
pointers to objects in a
container and want to call a
member function of the class
in an algorithm.

mem_fun_ref Converts a member
function of a class (or
template) into a function
object just like the
mem_fun() function
adapter does.

Use this helper function
when you are storing objects
(not pointers) in a container
and need to access the
object by reference.

