
Running the Apache Web Server

Since Apache is the most popular web server in use today, we will
examine some of the many options and configuration settings used to
control how Apache works. Since Apache is such a complex program,
there are numerous options and settings that we will not have time to
explore. Visit the Apache web site for additional information at
http://www.apache.org.

Important Files and Directories

Apache can be run either standalone (as a daemon) or from the inetd
super-server. Usually you will probably want to run it in standalone
mode for optimal performance. If you do run it from inetd, remember
every request will launch a new copy of Apache, which means Apache
must reread its configuration file, load any needed modules,
create/open log files, etc. Basically standalone mode is much faster
since those actions are only performed during startup.

Generally, you will find a startup script for standalone mode named
rc.httpd (or similar) under your /etc/rc.d (or perhaps /etc/rc.d/init.d)
folder.

Before starting Apache for the first time, you should first check its
configuration file. This file is always named httpd.conf. Finding the
location of the file is sometimes a problem however. Use one of the
following commands to locate the file:

locate httpd.conf
find / -name httpd.conf

It is quite possible that several copies of the file may exist on your
system. You should edit this file and make changes as needed. I
recommend modifying/adding the following two lines initially:

ServerAdmin root@localhost
ServerName www.example.com:80

Enter the appropriate values and then restart (or start) Apache with a
command similar to this:

/etc/rc.d/rc.httpd start

or

/etc/rc.d/init.d/httpd restart

http://www.apache.org/

Fedora system also have a service command that can be used like
this:

service httpd start

or

service httpd restart

You should now be able to visit the default web site using a web
browser by visiting this URL:

http://localhost

or

http:// server-name

The main directory for the web server is controlled by the
DocumentRoot setting in the httpd.conf file. In most Linux systems,
this defaults to the /var/www/htdocs or /var/www/html directory.

Apache will attempt to load the file named index.html.lang and send
this back to the user. The lang part is replaced by information sent to
Apache by the web browser, such as fr for French, it for Italian, and so
on. In our case, we should be viewing the file index.html.en, which is
the English version of the default web page.

You probably want the web server to startup automatically every time
the system is rebooted. The exact procedure to enable this varies
slightly depending on whether your version of Linux follows BSD or
SysV standards.

For a BSD-style system, you will need to enable the Apache startup
script by marking it as executable. Here is the command for a
Slackware (BSD-based) system:

chmod a+x /etc/rc.d/rc.httpd

Under a SysV system, things are more complex. You have to decide
which run levels should enable the Apache server. Remember, for a
RedHat/Fedora system, the run levels are defined as:

0 – Halt system (power down mode)
1 – Single user mode (also called maintenance mode)

http://server-name/
http://localhost/

2 – Multiuser mode, without NFS support
3 – Full multiuser mode, with NFS support
4 – Unused
5 – X11 mode (networking with GUI login)
6 – Reboot mode

You should examine the /etc/inittab file since the run levels do vary
slightly.

Now, you must decide the run levels where you want Apache to be
started. Normally, this will probably be 2, 3 and 5 for a RedHat
system. In order to enable this, run the following command:

chkconfig --levels 235 httpd on

That will enable the httpd startup script for run levels 2, 3 and 5.

Other commands used to manage services are:

chkconfig --list
system-config-services
serviceconf (older Fedora versions)
ntsysv

Building Your Own Web Site

To begin creating your own web site, all you have to do is create one
or more HTML documents using whatever editor your prefer.
Remember to name the main starting point index.html. Now you can
either copy the new files into /var/www/htdocs, or edit the
httpd.conf and change the DocumentRoot setting to point to any
directory you choose.

Permissions

If you examine the httpd.conf file, you will find a couple of lines
similar to this (the user name varies from system to system):

User nobody
Group nobody

These lines force Apache to assume the permissions of that user and
group account. You must make sure your HTML documents (and the
directories where they live) can be opened by those user accounts.
You can either modify the permissions of the files and directories, or
change the ownership. Generally the change in ownership is
recommended, since this is safer.

Command to change ownership of the files and/or directories:

chown -R nobody.nobody /var/www/htdocs

Command to change permissions of the files and/or directories:

chmod -R a+r /var/www/htdocs

Protecting Web Pages (Authentication)

While dynamic web pages will generally force a user to login by
verifying a password against a database, you can easily protect web
site pages without needing to to develop dynamic web pages using
PHP, Perl or another programming language. This is accomplished by
creating a hidden file named “.htaccess” in the directory you wish to
protect.

This file is used to override the options in Apache's main httpd.conf file
with settings unique to the directory in which the “.htaccess” file is
stored. The most common usage for this file is to require users to
login before Apache will grant access to the directory and its
subfolders.

Example:

AuthType Basic
AuthName "Password Protected Area"
AuthUserFile /var/www/htdocs/secret-area/.passwords
Require user randy

Explanation:

Directive Description

AuthType Defines the type of authentication that is required in
order to access the folder.

Options:

Basic – Standard username/password combination.

Digest – MD5 encrypted username/password
combinations.

AuthName This setting holds the string that will be displayed to
the user when they are asked to login.

AuthUserFile This defines the file that holds user names and
passwords for users. This file is created and
managed using the 'htpasswd' or 'htdigest' utilities.

Require This option defines who is authorized to access the
contents of the folder. This can consist of a space
separated list of user names or a group names. You
may also use the “valid-user” option to allow any
user with a valid password to have access.

The Basic authentication type transmits user names and passwords in
clear-text and should really only be used with SSL encrypted

connections.

The Digest authentication type encrypts passwords using the MD5
algorithm which is safer than clear-text mode, however older web
browsers may not support this mode.

Access Control

You may also restrict access to web pages by host name or IP address.
This is done using the Allow and Deny keywords in either the
“httpd.conf” or “.htaccess” files.

Example:

Order Deny,Allow
Deny from all
Allow from class.bamafolks.com

Directive Description

Order Defines the sequence in which the Allow and Deny
options are tested.

Deny from Lists the hosts or IP addresses that will be denied
access. Computers that match this setting will be
denied access, unless specifically granted access
via the “Allow from” option.

Allow from Similar to the “Deny from” option except it grants
access to matching computers instead of denying
access.

Combining Authentication and Access Control

If needed, you can combine both access control and authentication so
some computers are granted access based on their IP address, while
other users on other computers can only gain access by supplying a
user name and password. The “Satisfy” directive is used to do this.

Example:

AuthType Basic
AuthName “Sensitive Documents”
AuthUserFile /var/www/.passwords
AuthGroupFile /var/www/.groups
Require group customers
Order allow,deny
Allow from 192.168.0.0
Satisfy any

Naturally, if you are using dynamically generated web pages, you can

also authenticate your users using code if desired. There are also
several different modules available for Apache that can be used to
authenticate user accounts including the following:

mod_auth – Basic authentication using plain text files (described).
mod_auth_dbm – Authentication via DBM data files.
mod_auth_digest – Encrypted authentication support.
mod_auth_anon – Supports anonymous user access. (FTP style)
mod_auth_ldap – Authentication via LDAP lookups.

See the Apache web site for details on these modules.

Enabling SSL (Secure Socket Layer)

In many cases, you may wish to encrypt the communications between
the web server and web browser using SSL. This adds a level of
protection since all information will be encoded using cryptography
routines, making it less likely that hackers or network spies can grab
sensitive information out of the communications packets.

There are several different ways to use SSL within Apache. First, you
can just turn on SSL and let it encrypt the data. Second, you can use
SSL to restrict the users allowed to visit the web pages using
authentication.

In any case, SSL support is added to Apache using a module named
mod_ssl. Slackware has installed this module for you, but did not
activate it. The primary reason it is not enabled is that before you can
really run mod_ssl, you must first obtain or generate a server
certificate that Apache will use.

Certificates

A certificate is like a digital fingerprint that uniquely identifies your
web server to web browsers. In order to be considered a valid
certificate several conditions must be met. First the proper kind of
certificate is needed. Most web servers use an X.509 certificate
encoded using the RSA algorithm. This certification must be signed by
a certificate authority (CA). There are several companies that will sign
a certificate for your company, for a fee of course. They include
Verisign, Thawte and Uptime Commerce in the United States. Web
browsers have a list of recognized certificate authorities which they
recognize as valid signers of certificates. Take a look at Konqueror's
Crypto configuration settings for a long list of SSL Signers.

When you are first developing a web site, you probably do not want to
purchase a certificate immediately. Part of the problem is that the
name of the web server included within the certificate itself, therefore
you cannot move a certificate from one server to another. The answer
in this case is to create your own certificate and sign it yourself. This
requires that you act as a certificate authority (CA).

Creating a Self-Signed Certificate

NOTE: Apache version 2 has changed how this works. See the section
below for information on using SSL under Apache 2.

The process of creating and signing certificates yourself can be quite
complex. I highly recommend downloading the source code for
OpenSSL, which includes a handy script called CA.sh (or a Perl version
named CA.pl). These scripts makes both creating certification
requests and signing them much easier. While you can do so
manually, it is very tedious. Some versions of Linux have this utilities
already installed these utilities for you. Look for a /etc/ssl/misc
directory or search the system for the CA.pl file.

Let's create and install a new certificate for Apache by following these
steps:

$ cd /etc/ssl/misc
$./CA.pl -newca

At this point you will be prompted for some information. Remember
you are creating your own CA at this point, so a pass phrase is
needed. Enter other information as needed to match your
organization/server.

Here is an example of responses to make:

$./CA.pl -newca
CA certificate filename (or enter to create)
{Enter}
Making CA certificate ...
Generating a 1024 bit RSA private key
.....++++++
...................++++++
writing new private key to './demoCA/private/cakey.pem'
Enter PEM pass phrase: {Enter Pass Phrase Here}
Verifying - Enter PEM pass phrase: {Repeat Pass Phrase Here}

You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]: US
State or Province Name (full name) [Some-State]:Alabama
Locality Name (eg, city) []:Huntsville
Organization Name (eg, company) [Internet Widgits Pty Ltd]:Pearson Consulting
Organizational Unit Name (eg, section) []:
Common Name (eg, YOUR name) []:ca.bamafolks.com
Email Address []:rlp@bamafolks.com

NOTE: If you edit the file /etc/ssl/openssl.cnf you can customize the
default values for this process.

Now that you have created a new Certificate Authority, we can next

mailto:rlp@bamafolks.com

generate a new certificate request by doing the following:

$./CA.pl -newreq
Generating a 1024 bit RSA private key
.......................++++++
...............++++++
writing new private key to 'newreq.pem'
Enter PEM pass phrase: {Enter request pass phrase}
Verifying - Enter PEM pass phrase: {Repeat pass phrase}

You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:US
State or Province Name (full name) [Some-State]:Alabama
Locality Name (eg, city) []:Huntsville
Organization Name (eg, company) [Internet Widgits Pty Ltd]:Pearson Consulting
Organizational Unit Name (eg, section) []:
Common Name (eg, YOUR name) []:legolas.home.bamafolks.com
Email Address []:rlp@bamafolks.com

Please enter the following 'extra' attributes
to be sent with your certificate request
A challenge password []:{Enter}
An optional company name []:{Enter}
Request (and private key) is in newreq.pem

At this point, you could send the file "newreq.pem" to Verisign (or
other CA) where they will sign the request and issue a "real" certificate
for a fee. Since we created our own Certificate Authority, we can sign
it ourselves by following these steps:

$./CA.pl -sign
Using configuration from /etc/ssl/openssl.cnf
Enter pass phrase for ./demoCA/private/cakey.pem: {Enter CA pass phrase}
Check that the request matches the signature
Signature ok
Certificate Details:
 Serial Number: 1 (0x1)
 Validity
 Not Before: Apr 22 19:56:19 2003 GMT
 Not After : Apr 21 19:56:19 2004 GMT
 Subject:
 countryName = US
 stateOrProvinceName = Alabama
 localityName = Huntsville
 organizationName = Pearson Consulting
 commonName = legolas.home.bamafolks.com
 emailAddress = rlp@bamafolks.com
 X509v3 extensions:
 X509v3 Basic Constraints:
 CA:FALSE
 Netscape Comment:

 OpenSSL Generated Certificate
 X509v3 Subject Key Identifier:
 05:AF:65:04:A4:8F:FD:30:25:5C:6D:E3:5B:57:DA:CE:1B:76:10:BA
 X509v3 Authority Key Identifier:
 keyid:76:C6:D7:3F:12:C0:62:0E:A8:17:D1:17:58:D2:DA:BD:06:EA:99:C2
 DirName:/C=AU/ST=Alabama/L=Huntsville/O=Pearson
Consulting/CN=ca.bamafolks.com/emailAddress=rlp@bamafolks.com
 serial:00

Certificate is to be certified until Apr 21 19:56:19 2004 GMT (365 days)
Sign the certificate? [y/n]:y

1 out of 1 certificate requests certified, commit? [y/n]y
Write out database with 1 new entries
Data Base Updated
Signed certificate is in newcert.pem

We have actually created two files at this point. The first is named
newreq.pem and it holds our pass phrase. The second is named
newcert.pem and it holds the actual certificate. We must now copy
the files so Apache can use them as follows:

$ cp newreq.pem /etc/apache/ssl.key/server.key
$ cp newcert.pem /etc/apache/ssl.crt/server.crt

Your new certificate is now ready to use. We just need to enable SSL
mode for Apache and tell it where to locate the new certificate files we
just created. First, you must edit your httpd.conf file again and
uncomment the following line (near the end of the file):

Include /etc/apache/mod_ssl.conf

Now we can restart Apache to use SSL. Try doing this:

$ /etc/rc.d/rc.httpd restart

If you do so, Apache does get restarted, but not with SSL support. The
reason is that the script /etc/rc.d/rc.httpd uses the following command
internally:

apachectl start

But in order to activate SSL, this must be modified to read:

apachectl startssl

You should edit the script, but before you do, let's try starting Apache
manually first. Run these commands:

$ apachectl stop
$ apachectl startssl

You may be a bit surprised by the fact that you need to enter a pass
phrase. This is normal. The file /etc/apache/ssl.key/server.key is
encrypted and the pass phrase is needed in order to load the file.
Unfortunately, this means that even if you edit the /etc/rc.d/rc.httpd
file to add the "startssl" option, somebody must still enter the pass
phrase whenever the server is restarted.

This is a good idea from a security viewpoint, but not much help when
your server loses power at 8 pm on Friday and can't be restarted until
someone enters the pass phrase on Monday morning. You can
remove the encryption (and the need for a pass phrase) as follows:

$ cd /etc/apache/ssl.key
$ cp server.key server.key.orig
$ openssl rsa -in server.key.orig -out server.key

It is highly recommended that you also change the permissions on the
file so only root has read access.

Apache 2 SSL Certificates

Apache version 2 is a complete rewrite of the Apache system. While it
is still mostly backward compatible, it offers a more modular design
and better compatibility with a wider range of operating systems along
with performance enhancements. Many newer Linux distributions are
now bundling this new Apache version.

In addition, the OpenSSL system has also been updated with new
utilities, especially related to creating and managing SSL certificates.
The new genkey tool can be used to both generate and sign SSL
certificates much easier than the older CA.pl script.

The tools to create and manage certificates under the latest SSL
version should be found in the /etc/pki/tls/certs directory. After
making that your current working folder, you can enter one of the
following commands to generate new certificates:

make XXX.key – generates a public/private key pair
make XXX.csr – generates a certificate signing request
make XXX.crt – generates a self-signed certificate
make XXX.pem – generates both a key pair and self-signed certificate

To generate Apache compatible SSL certificates, use the following
commands:

make genkey – generates Apache-compatible key pair

make certreq – generates Apache-compatible signing request
make testcert – generates Apache-compatible self-signed certificate

The only real difference between the first set of commands and the
second set is that the second set has built-in default location and
names for where the files will be created. Those defaults match the
default names Apache uses in its mod_ssl.conf file.

Run this command to generate a test certificate:

make testcert

Answer the questions as appropriate. When prompted for the
Common Name, you must enter the same value as the ServerName
directive in the httpd.conf file.

Now you can restart the Apache web server using the service httpd
restart command. Unfortunately, you will find that you have to enter
the passphrase you assigned when generating the SSL certificate.

To remove the passphrase from the private key file, do the following:

cd /etc/pki/tls/private
cp localhost.key localhost.key.orig
openssl rsa -in localhost.key.orig -out localhost.key

You will have to enter the passphrase one last time. The openssl
command will then strip out the encryption and overwrite the
localhost.key file with a new version of the certificate. You should
then make the files read only using a chmod 400 filename
command.

Adding More Features to Apache

PHP Support

PHP is a very popular way to add support for dynamically generated
web pages. This is most useful when you need to extract data from
database servers, make remote network connections or perhaps even
generate charts and graphs on the fly. PHP support is added by telling
Apache to load an extra module via its configuration files. Other
languages such as Java, Perl or Ruby can also be enabled this way. To
enable PHP, editing /etc/apache/httpd.conf and
adding/uncommenting the following line:

Include /etc/apache/mod_php.conf

After you restart Apache, you can create a test script to verify PHP is
working. Create the following and copy it to your DocumentRoot
folder:

<?php
echo phpinfo();
?>

It should be named something like test.php. That means you can
view the results by visiting http://localhost/test.php.

Status Information

Apache has a couple of modules included that can be used to monitor
and check the health of the server using a web browser. If you edit
/etc/apache/httpd.conf you can enable the following sections:

ExtendedStatus On

<Location /server-status>
 SetHandler server-status
 Order deny,allow
 Deny from all
 Allow from .home.bamafolks.com
</Location>

<Location /server-info>
 SetHandler server-info
 Order deny,allow
 Deny from all
 Allow from .home.bamafolks.com
</Location>

http://localhost/test.php

This lines enable support for status and server information pages,
which you can access by visiting http://localhost/server-status or
http://localhost/server-info.

More Modules and Options

Apache supports many other modules in addition to SSL and PHP. Visit
the Apache web site at http://www.apache.org for more information.

http://www.apache.org/
http://localhost/server-info
http://localhost/server-status

