
Using the JBoss IDE for Eclipse

Important:

Some combinations of JBoss/JBoss-IDE/Eclipse do not like to work with
each other. Be very careful about making sure all the software
versions are compatible. This tutorial has been tested with the
following combinations of software:

Linux

Configuration #1
JDK 1.4.2
Eclipse 3.0.2 (GTK)
JBoss 3.2.7
JBossIDE 1.4.1.e31-jre14

Configuration #2
JDK 1.5.0
Eclipse 3.1.2
JBoss 4.0.4
JBossIDE 1.6.0

Windows

Configuration #1
JDK 1.5.0_03
JBoss 3.2.7
JBossIDE-1.5M1-jre15 (http://jboss.sourceforge.net)

Configuration #2
JDK 1.5.0_06
JBoss 4.0.4
JBossIDE 1.6.0 GA

Page: 1

Building a Simple EJB

Step 1: Create an EJB project

Select File -> New Project from the Eclipse menu

Browse to JBoss-IDE > J2EE 1.4 Project and click Next

Set the project name to SimpleCalc and click Next

Now, click the Browse button (near the bottom) and create a new
output folder name bin

Next click the Add Folder button (near the upper-right) and creating a
folder named src

NOTE: Creating these folders makes Eclipse store your .java source
code files in the src folder while the compiled .class files will be
stored in the bin folder. Separate folders makes packaging and
managing your projects easier.

Click on Finish to create the project.

Step 2: Create the Bean

Select File -> New -> Other from the Eclipse menu

Browse to JBoss-IDE -> EJB Components, select Session Bean and click
Next

Enter CalculatorBean in the Name field and edu.uah.coned.ejb in
the Package field.

Also enable the ejbCreate() check box and click Finish.

NOTE: It is highly recommended that you place all your beans inside
a package that ends with '.ejb' and to name the beans so they end
with Bean.

Step 3: Define the Bean

Use the Package Explorer window to expand the CalculatorBean.java

Page: 2

file found in the src/edu/uah/coned/ejb folder. Right-click on the
CalculatorBean class (the green C icon).

Select J2EE > Add Business Method from the menu.

Enter add for the Method Name, double for the Return Type and then
use the Add button next to the Parameters window to create 2
parameters named a and b both of type double. Click the Finish
button once the method is defined.

Repeat the steps above to 3 more methods named subtract,
multiply, and divide. All of them should return a double and accept
two parameters named a and b of type double.

Step 4: Implement the new methods

Open the CalculatorBean.java file (if not already open) and modify the
newly created methods as shown below:

/**
 * Business method
 * @ejb.interface-method view-type = "remote"
 */
public double add(double a, double b) {

return a + b;
}
/**
 * Business method
 * @ejb.interface-method view-type = "remote"
 */
public double subtract(double a, double b) {

return a - b;
}
/**
 * Business method
 * @ejb.interface-method view-type = "remote"
 */
public double multiply(double a, double b) {

return a * b;
}
/**
 * Business method
 * @ejb.interface-method view-type = "remote"
 */
public double divide(double a, double b) {

if (b == 0.0) {
throw new EJBException("Divide by zero error");

}
return a / b;

Page: 3

}

Step 5: Generate EJB related files

Now that our bean has been created, we need to build interfaces that
clients will use to access the code. Enterprise JavaBean components
are only used by the application server, never directly by clients. We
are going to use the XDoclet tool which is bundled with the JBossIDE to
create the various interface files for us.

First, select Project > Properties from the menu (or right-click on the
SimpleCalc project and select Properties)

Select XDoclet Configurations from the list and click the Enable
XDoclet check box if not already enabled.

Click the Add Standard button. Enter EJB in the Name file, select
Standard EJB and then click the OK button.

Now, click on the new EJB configuration. Expand the bottom left tree
near and find the fileset entry. Double the includes property (in the
right list) and change it to **/*Bean.java. This restricts XDoclet so it
only processes files that are named *Bean.java.

After saving your XDoclet Configuration settings, right-click on the
SimpleCalc project and select the Run XDoclet option (you can also
press Ctrl+Shift+F1).

Details

Once the XDoclet tool runs, you will find that 2 new folders have been
added to your project. They are the src/edu.uah.coned.interfaces and
src/META-INF folders.

The interfaces folder should have 3 files that define the interfaces for
your Bean class. Clients will use these interfaces to access your Bean.
If you add more methods to your Bean class, remember to Run
XDoclet again to update the interface files.

In the META-INF folder you will find 2 files named ejb-jar.xml and
jboss.xml. The first is Sun's standard EJB descriptor file that is
required for all Bean classes. The second contains Java Naming and
Directory Interface (JNDI) information JBoss needs about your Bean

Page: 4

class, so it can be found by clients.

Step 6: Develop a client to use the Bean

At this point we need a Java program that exercises the new Bean we
just created. Let's create a Java servlet and HTML page. Alternately,
we could also build a Java command-line or GUI application instead.

Select File -> New -> Other

Now select JBoss-IDE -> Web Components -> HTTP Servlet and click
Next

Enter CalculatorServlet for the Name and edu.uah.coned.web for
the Package.

Also check the init() method and doPost() method check boxes and
click the Finish button.

NOTE: Just as EJB should be named so then end with Bean, it is
highly recommended that you append Servlet to Java servlet
classes. It is also a good idea to place servlets in their own package
name that ends with .web.

Step 7: Implement the Servlet

First add a private variable to the class that will hold a reference to the
Bean object.

public class CalculatorServlet extends HttpServlet {

private CalculatorHome home;

public CalculatorServlet() {
super();
// TODO Auto-generated constructor stub

}
...

NOTE: You will need to add an import statement for the
edu.uah.coned.interfaces.CalculatorHome class to the project.
The easist way to do this is by using Eclipse's Organize Imports
command found under the Source menu, or by pressing
Ctrl+Shift+O.

Page: 5

Next, modify the init() method to read as shown below:

public void init(ServletConfig config) throws ServletException {
super.init(config);
try {

Context context = new InitialContext();
Object ref = context.lookup("java:/comp/env/ejb/Calculator");
home = (CalculatorHome) PortableRemoteObject.narrow(ref,

CalculatorHome.class);
} catch (Exception e) {

throw new ServletException("Failed to lookup Calculator in JNDI");
}

}

NOTE: Remember to import the javax.naming.Context,
javax.naming.InitialContext and
javax.rmi.PortableRemoteObject classes.

Next, implement the doPost() method like this:

protected void doPost(
HttpServletRequest request,
HttpServletResponse response) throws ServletException, IOException {

response.setContentType("text/html");
PrintWriter out = response.getWriter();

out.println("<html><head><title>");
out.println("Calculator Results");
out.println("</title></head>");
out.println("<body>");

out.println("<h1>Calculator Results</h1>");

double a = 0, b = 0, result = 0;
String operation = "";

try {
Calculator bean = home.create();
String aStr = request.getParameter("a");
String bStr = request.getParameter("b");

if (aStr != null && bStr != null) {
try {

a = Double.parseDouble(aStr);
b = Double.parseDouble(bStr);

} catch (Exception e) {
}

if (request.getParameter("Add") != null) {
operation = " + ";

Page: 6

result = bean.add(a,b);
} else if (request.getParameter("Subtract") != null) {

operation = " - ";
result = bean.subtract(a,b);

} else if (request.getParameter("Multiply") != null) {
operation = " * ";
result = bean.multiply(a,b);

} else if (request.getParameter("Divide") != null) {
operation = " / ";
result = bean.divide(a,b);

} else {
throw new ServletException("Unrecognized operation");

}

} else {
throw new ServletException("Missing one or more input values");

}

bean.remove();

out.println("<p>" + a + operation + b + " = " + result + "</p>");

} catch (Exception e) {
out.println(e.getMessage());
e.printStackTrace(out);

} finally {
out.println("</body></html>");
out.close();

}
}

NOTE: Remember to import the java.io.PrintWriter class.

The final step for the servlet is to add some metadata to the top of the
class. XDoclet uses this information to create the required JBoss
configuration files for the servlet. This metadata must be created
inside the comments at the top of the file. Modify it to read like this:

/**
 * Servlet Class
 *
 * @web.servlet name="Calculator"
 * display-name="CalculatorServlet"
 * description="Exercises the Calculator EJB"
 *
 * @web.servlet-mapping url-pattern="/Calculator"
 *
 * @web.ejb-ref name = "ejb/Calculator"
 * type = "Session"
 * home = "edu.uah.coned.interfaces.CalculatorHome"
 * remote = "edu.uah.coned.interfaces.Calculator"

Page: 7

 * description = "CalculatorBean references"
 *
 * @jboss.ejb-ref-jndi ref-name = "ejb/Calculator"
 * jndi-name = "ejb/Calculator"
 */

Step 8: Setup and run XDoclet for the Servlet

Previously we setup an XDoclet configuration to automatically
generate the ejb-jar.xml and jboss.xml files for our Bean class. We
must do the same thing for the servlet class.

First select Project > Properties (or right-click on the SimpleCalc
project and select Properties from the menu).

Once again, highlight the XDoclet Configurations in the list

Click the Add Standard button. Enter Web in the Name file, select
Standard Web and then click the OK button.

Next, select the Web configuration and click on webdoclet in the lower-
left panel. Change the destDir property property on the right to
src/WEB-INF. This will force XDoclet to store the servlet related files
in that folder within the web project.

Next, select the fileset entry on the left list and change the includes
property to read **/*Servlet.java. Again, this makes Xdoclet only
process source files that end with that extension.

Finally, clear the check box next to the jsptaglib entry on the left list.
This is not required for our project.

After saving your changes, right-click on the SimpleCalc project and
select the Run XDoclet option.

NOTE: This should create a new src/WEB-INF folder with XML files
that describe the servlet to Jboss. XDoclet has extracted the
metadata we added to the top of our file and used that to generate
a jboss-web.xml and web.xml file.

Step 9: Create an HTML page

Now we need an HTML page that will allow the user to enter the
parameters desired and then invoke the Servlet we just created.

Page: 8

First, add a new folder to the project named 'docroot'.

Next, create an HTML file named index.html and add it to the
docroot folder. I find it easiest to right-click on the docroot folder
and then select New > Other in the popup menu. Browse until you
find the option to create an HTML file.

NOTE: This option seems to be in different places depending on the
version of Eclipse and/or JBossIDE. Try looking in the Web branch,
or perhaps the JBoss-IDE branch.

Modify the file like this:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html>
<head>
 <title>Calculator EJB Test Page</title>
</head>
<body bgcolor="#FFFFFF">
 <h1>Calculator Form</h1>
 <form action="Calculator" method="post">
 <table cellpadding="2" cellspacing="2" border="0">
 <tr>
 <td align="right">First Number :</td>
 <td align="left"><input type="text" name="a"></input></td>
 </tr>
 <tr>
 <td align="right">Second Number :</td>
 <td align="left"><input type="text" name="b"></input></td>
 </tr>
 <tr>
 <td colspan="2">
 <input type="submit" name="Add" value="Add"></input>
 <input type="submit" name="Subtract" value="Subtract"></input>
 <input type="submit" name="Multiply" value="Multiply"></input>
 <input type="submit" name="Divide" value="Divide"></input>
 </td>
 </tr>
 </table>
 </form>
</body>
</html>

Step 10: Create a J2EE application file

J2EE web applications require a file named application.xml that
contains a description and various options used by Java-enabled web

Page: 9

server. Create the file by doing this:

First right-click on the src/META-INF folder and select New -> Other

Browse to JBoss-IDE -> Descriptors > EAR 1.3 Deployment Descriptor
under the branch and click Next, then click Finish

Double-click the new application.xml file and modify it like this:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE application PUBLIC

"-//Sun Microsystems, Inc.//DTD J2EE Application 1.3//EN"
"http://java.sun.com/dtd/application_1_3.dtd">

<application>
<display-name>Calculator Application</display-name>
<module>

<ejb>CalculatorEJB.jar</ejb>
</module>
<module>

<web>
<web-uri>CalculatorWeb.war</web-uri>
<context-root>/Calculator</context-root>

</web>
</module>

</application>

Step 11: Packaging and Deploying the Application

Now that our code is completed, we must install the application so we
can test it out. This involves creating several different types of JAR
files and then deploying them to the JBoss server. Again, the JBoss-IDE
for Eclipse has tools to help automate much of this.

Here are the files we need to create:

EJB Jar – This jar file will contain our Bean interfaces, classes and the
EJB deployment descriptor files (under src/META-INF) we created
earlier using the XDoclet utility.

EJB Client Jar – This jar file will contain only the EJB interfaces (withou
the Bean) and is needed by the servlet class.

Web Application War – This file (with a .WAR extension) will contain the
web site related files including the HTML documents, servlet class, the
EJB Client and various deployment descriptors.

Page: 10

J2EE Application EAR – The Enterprise Application Archive (with a .EAR
extension) will contain the EJB Jar, WAR and the web deployment
descriptors (under src/WEB-INF). This has everything JBoss needs to
run our application.

Start by bringing up the Properties window for the project again.

Highlight the 'Packing Configurations' option on the list and click the
check box near the top named Enable Packaging.

Now click the Add Standard button and enter CalculatorEJB.jar in
the Name field and select Standard-EJB.jar from the list. Click the
OK button to create a new configuration with default options.

We need to customize a couple of settings, so must remove a couple of
options from the defaults, so expand the CalculatorEJB.jar tree so you
can see what files are currently scheduled to be added to the JAR.
Remove the '/SimpleCalc/src/META-INF/MANIFEST.MF' and
'/SimpleCalc/src/META-INF/jbosscmp-jdbc.xml' entries.

NOTE: We are not using JDBC for this example, so the jbosscmp-
jdbc.xml file is not needed. The MANIFEST.MF file is normally used
to set the correct CLASSPATH entries and other related properties
needed by the application, but since the jboss.xml file already
contains that information, we can safely remove it from this
configuration. Application servers other than JBoss may have
slightly different requirements.

Once again click on the Add Standard button. Enter CalculatorEJB-
client.jar in the Name field and select Standard-JAR.jar from the list.
Press OK to create a default configuration.

Again, the default settings need to be adjusted, so expand the tree
and remove the MANIFEST.MF entry. Next, highlight the
'/SimpleCalc/bin' entry and click on Edit.

Change the Includes to read edu/coned/uah/interfaces/*.class. This
settings means the JAR file will only have the interface classes that are
required by client programs.

Next, click on Add Standard again. Enter CalculatorWeb.war in the
Name field and and select Standard-WAR.war from the list. Press OK.

Expand the tree and again remove the MANIFEST.MF file from the list.

Page: 11

Also edit the '/SimpleCalc/bin' entry and change the Includes value
to edu/coned/uah/web/*.class. That way the WAR file will only
contain classes related to our servlet.

Since the servlet uses our bean class, we must add the bean interface
classes to the WAR package. If you remember, we earlier setup our
packages so the interface classes will be packaged into the
CalculatorEJB-client.jar file. So that means we need to add that file
to the WAR file also.

To do this, right-click on the 'CalculatorWeb.war' package and select
Add File from the menu. Now, click the Project File... button to bring
up a file browser window. Unfortunately, the file we need has not yet
been created, so instead of browsing for it, just enter the name /
SimpleCalc/CalculatorEJB-client.jar and click OK. That file must
be stored in the WEB-INF/lib folder within the web application archive,
so enter WEB-INF/lib in the Prefix field and click OK.

The WAR file must also have the HTML page we created earlier. This
will be the default page users see when they visit our application.
Right-click on the CalculatorWeb.war file and select the Add Folder
option. Browse to find the docroot folder and add it. That should
complete our WAR package.

Finally we need to create one more package. The last package must
be an Enterprise Application Archive that contains all of the other JAR
and WAR files we just defined. This will be the complete application
and all support files needed by JBoss.

Click on Add Standard once last time. Enter CalculatorApp.ear in
the Name field and and select Standard-EAR.ear from the list. Click
OK to create the new package definition.

Once again, expand the tree and remove the MANIFEST.MF file.

Next, right-click on the CalculatorApp.ear file and select Add File
from the menu. Add the 'CalculatorWeb.war' file (again you must
enter the name manually since it does not yet exist). Repeat and add
the 'CalculatorEJB.jar' file also.

The packaging configuration is now complete, so click OK to save the
packaging settings.

Now you can generate the archive files by right-clicking on the project

Page: 12

and selecting Run Packaging from the menu. If the packaging is
successful, you should now see the new files in the Project Explorer
window.

Step 12: Deploy the Application

You can now install the application by right-clicking the
CalculatorApp.ear file and selecting Deployment -> Deploy To from
the popup menu.

Select the desired JBoss installation where you want to deploy the
application and click OK.

NOTE: You can add additional JBoss targets by creating a new
entries int the Debug setup window. If you did not see any JBoss
options in the last step, use Run > Debug to define a new Jboss
configuration.

Step 13: Test the Application

Use your web brower to visit http://localhost:8080/Calculator/. You
should see a form where you can enter 2 numbers and request a
calculation.

Page: 13

Accessing the Bean from a normal Java Applications

Once your Bean is deployed under a JBoss server, any Java
applications can access it if needed. Let's create a simple console
application that uses our shiny new bean.

Step 1: Create a new Java Project

Select File -> New -> Project

Highlight the Java Project wizard and click Next

Enter CalcClientApp for the Project name and click Next

NOTE: You may wish to create separate source and bin folders for
the code and class files like we did for the bean project. You can
also make this the default behavior by setting the appropriate
options under Window -> Preferences -> Build Path.

Visit the Libraries tab where we must add 2 JARs to our project.

Click on Add JARs and browse down into the SimpleCalc project and
select the CalculatorEJB-client.jar file.

Next, click on Add External JARs and browse to find the client folder
under your JBoss installation. Select the jbossall-client.jar file.

Step 2: Create the source code

Use File -> New Class to create a new class named CalcClient. Make
sure the option to create a main method is enabled.

Modify the source code as shown below:

import java.util.Hashtable;

import javax.naming.Context;
import javax.naming.InitialContext;
import javax.rmi.PortableRemoteObject;

import edu.uah.coned.interfaces.Calculator;
import edu.uah.coned.interfaces.CalculatorHome;

/*
 * Created on May 23, 2005

Page: 14

 *
 * TODO To change the template for this generated file go to
 * Window - Preferences - Java - Code Style - Code Templates
 */

/**
 * @author randy
 *
 * TODO To change the template for this generated type comment go to
 * Window - Preferences - Java - Code Style - Code Templates
 */
public class CalcClient {

private static Calculator bean = null;

public static void main(String[] args) {
try {

//
// NOTE: You can put these values in jndi.properties instead
// of hard-coding them inside the application.

Hashtable ht = new Hashtable();

ht.put
(InitialContext.INITIAL_CONTEXT_FACTORY,"org.jnp.interfaces.NamingContext
Factory");

ht.put(InitialContext.PROVIDER_URL,"jnp://localhost:1099");
ht.put

(InitialContext.URL_PKG_PREFIXES,"org.jboss.naming:org.jnp.interfaces");

// Find and create a reference to the bean using JNDI
Context context = new InitialContext(ht);
Object ref = context.lookup("ejb/Calculator");
CalculatorHome home = (CalculatorHome)

PortableRemoteObject.narrow(ref, CalculatorHome.class);
bean = home.create();

System.out.println("4 + 3 = " + bean.add(4,2));
System.out.println("4 - 3 = " + bean.subtract(4,3));
System.out.println("4 * 3 = " + bean.multiply(4,3));
System.out.println("4 / 3 = " + bean.divide(4,3));

// System.out.println("Expecting an error.");
// System.out.println("4 / 0 = " + bean.divide(4,0));

} catch (Exception e) {
System.out.println("Error: " + e.getMessage());
e.printStackTrace();

} finally {
if (bean != null) {

try {
bean.remove();

Page: 15

} catch (Exception e) {
System.out.println("Error removing bean:" + e.getMessage

());
e.printStackTrace();

}
}

}
}

}

Step 3: Test the Client

At this point you should be able to run and/or debug the code, after
making sure JBoss is running and that the CalculatorBean is deployed.

NOTE: If you forget to add the jbossall-client.jar or CalculatorEJB-
client.jar when creating the project, you may do so in the Libraries
tab of the appropriate Debug configuration.

Page: 16

